Схема защиты акб от глубокого разряда на микросхеме ne7555. Защита от глубокого разряда батареи аккумуляторов Защита от разряда аккумулятора 12в схема

Всем известно, что глубокая разрядка аккумуляторных батарей резко уменьшает срок эксплуатации последних. Для того чтобы исключить такой режим работы аккумуляторов применяют различные схемы – ограничители разрядки. С появлением микросхем и мощных полевых переключательных транзисторов такие схемы стали иметь небольшие габариты, стали более экономичными.

Схема ограничителя, ставшая уже классической, показана на рисунке 1, ее можно встретить во многих схемах радиолюбителей. Устройство предназначено для работы в составе бесперебойного источника питании домашнего инкубатора. Полевой транзистор VT1 – IRF4905 в данной схеме выполняет функцию ключа, а микросхема КР142ЕН19 является компаратором напряжения.

При замыкании контактов К1, это контакты реле, которые подключают аккумулятор при отсутствии напряжения сети 220В, на схему подается напряжение с аккумуляторной батареи GB1, но так как сам по себе транзисторный ключ открыться не может, то для его запуска введены два дополнительных элемента – С1 и R2. И так, при появлении напряжения на входе, начинает заряжать конденсатор С1. В первый момент начала его заряда затвор транзистора оказывается зашунтирован этим конденсатором на общий провод схемы. Транзистор открывается и если напряжение на аккумуляторной батарее находится выше установленного на компараторе порога, он остается открытым и далее, если же напряжение ниже…, то транзистор сразу же закрывается. Порог отключения аккумулятора от нагрузки устанавливается резистором R3. Компаратор работает следующим образом. По мере разряда аккумуляторной батареи напряжение на выводе 1 микросхемы DA1 КР142ЕН19 будет уменьшаться и как только оно приблизится к опорному напряжению данной микросхемы -2,5В, начнет увеличиваться напряжение на ее выводе 3, что соответствует уменьшению напряжения на участке исток-затвор транзистора VT1. Транзистор начнет закрываться, что приведет к еще большему уменьшению напряжению на выводе 1 DA1. Возникает лавинообразный процесс закрывания VT1. В результате этого нагрузка будет отсоединена от аккумулятора. Ток нагрузки, коммутируемый данным транзистором, может быть увеличен в разы при условии соблюдения теплового режима транзистора. Я имею в виду установку его на радиатор, но не забывайте, что при температуре кристалла 100°С, максимальный ток стока уменьшается до 52А. Мощность стока транзистора 200Вт дана в справочнике для температуры 25°С.

Резистор R1 нужен для создания необходимого тока через микросхему, который должен быть не менее одного миллиампера. Конденсаторы С1 и С3 блокировочные. R4 это сопротивление нагрузки. Если последовательно с нагрузкой включить диод, лучше с барьером Шоттки, то можно ввести в данную схему индикатор перехода работы на аккумуляторную батарею – светодиод HL1. Для экономии энергии батареи в качестве индикатора лучше взять сверхъяркий светодиод и подобрать номинал резистора R по нужной яркости.

Создавая устройства с автономным питанием необходимо позаботиться о защите аккумулятора от глубокого разряда. Достаточно один раз упустить момент и допустить глубокую разрядку акб ниже минимального порога напряжения и ваш аккумулятор выйдет из строя, либо потеряет часть емкости и окажется неспособен работать на номинальных токах нагрузки.

С целью предотвращения случаев снижения напряжения ниже критической отметки в разрыв цепи акб- потребитель устанавливают схемы защиты, которые состоят из нескольких узлов:
компаратора и силового ключа.

Требования к схеме защиты:

  • малый ток утечки (собственное потребление)
  • коммутация токов сравнимых с максимально допустимыми для АКБ

Данная схема защиты от глубокого разряда аккумулятора собиралась для защиты кислотно-гелевого 6 вольтового АКБ емкостью 4 ампер-часа, но она может быть настроена и на работу с 12 вольтовыми акб и выше, вплоть до напряжения питания микросхемы ne7555. Прообразом этой платы, была найденная в каком-то журнале и немного измененная. Вместо обычного стабилитрона, был введен регулируемый стабилитрон TL431 который позволяет настраивать напряжение отсечки (отключения нагрузки) в совокупности с подстройкой резистивного делителя R6/R7. С 3-ей ножки микросхемы таймера 555 сигнал стал не засвечивать светодиод, а открывать n-p-n транзистор, который в свою очередь открывает силовой ключ N-channel полевой транзистор. Обратите ваше внимание на характеристики данного транзистора, он должен быть рассчитан на работу с предполагаемыми токами нагрузки, и еще немаловажная деталь- это напряжение открытия затвора. Если вы планируете схему для 6 вольтового акб вам необходим полевой транзистор с напряжением открытия 5 вольт n-channel logic level mosfet. Полевые транзисторы «общего силового» назначения с напряжением открытия 10-20 вольт вам не подойдут, так как при напряжении между затвором и истоком транзистора 5 вольт они будут находиться не в режиме насыщения а в линейном режиме, что приведет к сильному тепловыделению и выходу из строя.

Схема защиты кислотно-свинцового аккумулятора от разряда

Задача такая: есть солнечные панели, заряжающие аккумулятор, и есть нагрузка, сосущая этот аккумулятор. Задумано так, что аккумулятор работает в буферном режиме и постоянно разряжается и подзаряжается. Но в реальности режим получается несколько иным, и возможна ситуация, когда нагрузка может чрезмерно разрядить аккумулятор. Известно, что разряд кислотно-свинцовых аккумуляторных батарей ниже 11 вольт для них губителен: происходит необратимая сульфатация пластин, в результате которой существенно теряется ёмкость батареи. Чтобы этого не происходило, нужно отключать нагрузку, если аккумулятор разрядился до 11 вольт, в идеале - с небольшим запасом, т.е. не до 11, а, допустим, до 11,5 вольт.

Поиск схем в интернете привёл к ожидаемому результату: самых нужных и полезных устройств либо нет, либо единицы, и те - далеки от идеала. Удалось найти схему на радиокоте, которая, в принципе, поставленную задачу выполняет, но она не продумана. В частности, если нагрузка разрядила аккумулятор, устройство отключило её на 11 вольтах, что будет происходить далее? Напряжение на аккумуляторе слегка подрастёт, даже без подзарядки, и нагрузка вновь подключится, пока напряжение снова не просядет, и так - циклически, от раза к разу, в режиме, можно сказать, генерации.

Чтобы этого не происходило, необходим гистерезис. Он разносит пороги срабатывания устройства, предотвращая возникновение подобных режимов генерации циклических срабатываний. У компараторов на этот случай есть прекрасный вариант включения, который заключается в добавке всего лишь одного резистора с выхода на вход. Именно этим способом мы доработали схему с радиокота, промоделировав её в протеусе.


Схема устройства очень простая. На интегральном стабилизаторе 7805 собран источник опорного (образцового) напряжения. Напряжение с аккумулятора, поступающее через делитель на потенциометре, сравнивается с ним, что приводит к срабатыванию или не срабатыванию компаратора. Потенциометром регулируется напряжение срабатывания, а резистором с выхода на вход задаётся гистерезис. При номиналах, указанных на схеме, нагрузка отключается при напряжении 11,5 вольт, а подключается (по мере заряда аккумулятора) - на 12,5 вольтах. Пересчитав сопротивления этих резисторов, данные значения напряжений можно изменять.


Печатная плата нарисована под имеющиеся компоненты, чем и обусловлен выбор таких крупных деталек. Светодиод предназначен для индикации текущего режима работы устройства: он светится, когда нагрузка подключена. Диод защищает от выбросов ЭДС самоиндукции обмотки реле, которое предполагается для управления нагрузкой.


Печатная плата.

Есть две вещи, которые очень не любят аккумуляторы: перезарядка и переразрядка. И если первую проблему успешно решают современные зарядные устройства (кроме простейших выпрямителей), то с разрядом ниже критического уровня дела обстоят хуже - почти никогда питаемые от батарей устройства не обеспечивают предохранение от сверхразрядки. Не исключается и случайный разряд - когда просто забыли отключить прибор и он разряжается, разряжается... Для решения этой проблемы предлагается к самостоятельной сборке простой низковольтный модуль отключения цепи. Такая схема довольно проста и применима к любой литиевой или свинцово-кислотной аккумуляторной батарее. Естественно порог отключения можно настроить соответственно АКБ.

Схема блока защиты АКБ

Как это работает. Когда кнопка сброса нажата, положительное напряжение поступает на затвор N-канального MOSFET силового транзистора.

Если напряжение на выходе стабилитрона U1 выше 2.5 вольт, а это определяется делителем напряжения, состоящим из R4, R5 и R6, катод U1 оказывается подключен к его аноду, что делает его отрицательным по отношению к его эмиттеру, R2 ограничивает базовый ток до безопасного значения и обеспечивает достаточный ток для работы U1. И транзистор Q1 будет удерживать схему открытой, даже когда вы отпустите кнопку сброса.

Если напряжение на U1, падает ниже 2,5 вольт, стабилитрон отключается и подтягивает положительное напряжение эмиттера R1, выключив его. Резистор R8 также выключает полевой транзистор, приводя к отключению нагрузки. Причём нагрузка не будет включена снова до нажатия кнопки сброс.

Большинство малогабаритных полевых транзисторов рассчитаны только для +/- 20 вольт на затворе - источник напряжения, а это означает, что схема блока подходит для не более чем 12 вольтовых устройств: если требуется рабочее напряжение выше, необходимо будет добавить дополнительные элементы схемы, чтобы сохранить безопасность работы полевика. Пример использования такой схемы: простой контроллер заряда солнечных батарей показанный на фото.


Если требуется более низкое напряжение, чем 9 вольт (или выше 15) - надо будет пересчитывать значения резисторов R4 и R6, чтобы изменить диапазон регулировки.

В схему можно поставить практически любой кремниевый PNP транзистор с номиналом не менее 30 вольт и любой N-канальный MOSFET с номинальным напряжением не менее 30 вольт и током более чем в 3 раза от того, что вы собираетесь коммутировать. Проходное сопротивление доли Ома. Для прототипа использовался F15N05 - 15 ампер, 50 вольт. Для высоких токов подойдут транзисторы IRFZ44 (50 А Макс.) и PSMN2R7-30PL (100 А Макс.). Также можно параллельно соединить несколько однотипных полевых транзисторов по мере необходимости.

Это устройство не должно оставаться подключенным к АКБ долговременно, так как потребляет само несколько миллиампер из-за светодиода и тока потребления U1. В выключенном состоянии его ток потребления ничтожно мал.

Что-то попаять захотелось… Не отказывать же себе в таком удовольствии 🙂

Предыстория такова. Собираю квадрокоптер 🙂 Нужны хорошие аккумуляторы: большой ёмкости, с хорошей токоотдачей, лёгкие. Т.е. литий-ионные. Была закуплена пара аккумуляторов и было решено их протестировать. Я в последнее время проверяю всё что покупаю в Китае. Гораздо лучше собирать устройство из заведомо исправных деталей: во-первых, есть время перезаказать детальку если пришла дохлая, во-вторых, на столе элемент проверить проще чем в устройстве и не придётся выдирать его из недр в случае чего. Входной контроль — это правильно!

Итак, проверяю мои батарейки и обнаруживаю что они показывают ёмкость заметно меньше заявленной. Ну, бывает, полежали на складе и всё такое (хотя напряжение было в норме и это должно было насторожить). Помню что аккумуляторы можно «потренировать», т.е. провести несколько циклов разряд-заряд и тогда ёмкость может восстановиться.

Ставлю одну батарею на зарядник iMax B6 , который умеет автоматически управлять процессами разряда и заряда. Процесс долгий… что делать со второй? Ага, мысль! Давай-ка я её по-старинке, лампочкой разряжу! Да, я знаю что литий-ионные аккумуляторы нельзя разряжать ниже примерно 3 Вольт на элемент («банку»), но у меня же есть тестер, я буду контролировать напряжение прям на балансировочном разъёме… В общем, плохая идея. Я, конечно закрутился и угандошил батарейку в ноль 🙁

Я думал — ничего страшного. Прошлый опыт с никель-кадмием говорит что полный разряд это плохо, но не смертельно. Ан нет! Моему аккумулятору хватило одного раза чтобы один элемент из трёх вздулся и сдох (пришлось его ампутировать и теперь у меня есть 2S аккумулятор). Т.е. литий-ионный аккумулятор разряжать ниже 3В на элемент не просто нельзя, а совсем, вообще нельзя!

Так, думаем дальше. Далеко не во всех приборах, особенно самодельных есть контроллер, который не даст разрядить батарею до опасного уровня. Значит нужно некое устройство, которое будет следить за напряжением и предупредит в случае чего. Моделисты всего мира в голос ржут надо мной за такую свежую идею 😀

Как это сделать? Мысль потекла в какие-то влажные дали, в сторону схемы на микроконтроллере с поэлементным контролем батареи… И тут на глаза попалось видео , в котором была предложена очень простая аналоговая схемка, которая отключает питание при снижении напряжения ниже заданного порога. Правда, она следит только за общим напряжением на батарее и не контролирует отдельные «банки»…. но мы же заряжаем наш аккумулятор по-честному, на балансирующем заряднике , поэтому при работе достаточно знать общее напряжение.

Пока я размышляю, китайцы действуют! И вот один из них накосячил вместо заказанных «кренок» (L7805) прислал мощные МОП-транзисторы (они же MOSFET). Нууууу… раз столько всего сошлось — пора браться за паяльник 🙂

Так, схема годная. Но есть нюанс (c). В ней есть кнопка запуска. Т.е. чтобы включить нагрузку, надо подать напряжение и кратковременно нажать кнопку. Неудобно: два действия вместо одного. Хочу без кнопки!