Переделка бп atx в зарядное устройство. Зарядное устройство из компьютерного бп - авто & мото - radio-bes - электроника для дома

Мельничук Василий Васильевич (UR5YW), Григоряк Сергей Анатолиевич, г. Черновцы, Украина.При переделке компьютерных импульсных блоков питания (далее – ИБП) с управляющей микросхемой TL494 под блоки питания для питания трансиверов, радиоаппаратуры и зарядные устройства для автомобильных аккумуляторов , накопилась часть ИБП, которые были неисправны и не поддавались ремонту, работали нестабильно или имели управляющую микросхему другого типа. Дошли руки и до оставшихся блоков питания, из них после недолгих экспериментов вывели технологию переделки под зарядные устройства (далее – ЗУ) для автомобильных аккумуляторов.

Также после выхода моей статьи "ИБП ПК для радиолюбительских целей на TL494 со стабилизацией напряжения и тока"на электронную почту начали приходить письма с разными вопросами, мол, что и как, с чего начинать.

Перед тем как приступить к переделке следует внимательно ознакомиться с книгой , в ней подробно изложено описание работы ИБП с управляющей микросхемой TL494. Также не лишним было бы посещение сайтов и , где подробно рассмотрены вопросы переделки компьютерных ИБП. Для тех радиолюбителей, которые не смогли найти указанную книгу попробуем «на пальцах» объяснить, как «укротить» ИБП.И так обо всем по порядку. Схему ИБП можно разделить на такие основные части: - входной помехоподавляющий фильтр (не всегда устанавливается производителем); - сетевой выпрямитель; - сглаживающий емкостный фильтр; - ключевой преобразователь напряжения с импульсным силовым трансформатором (силовой инвертор); - согласующий каскад; - схема управления; - цепи формирования выходных напряжений и передачи сигнала обратной связи на схему управления; - выходной выпрямитель с фильтром; - вспомогательный преобразователь (отсутствует в боках питания типа АТ).Входные цепи (Рис. 1) включают в себя: входной помехоподавляющий фильтр (на схеме обведен пунктиром), сетевой выпрямитель, сглаживающий емкостный фильтр. Терморезистор TR1 с отрицательным ТКС служит для ограничения броска зарядного тока через конденсаторы С5 и С6. В холодном состоянии сопротивление терморезистора составляет несколько Ом, зарядный ток через выпрямительные диоды моста VDS1 ограничивается на безопасном для них уровне. В результате протекания через терморезистор тока он разогревается и его сопротивление уменьшается до долей Ома и в дальнейшем практически не влияет на работу схемы ИБП. Сетевой плавкий предохранитель FU1 предназначен для защиты питающей сети от перегрузки при возможных коротких замыканиях в первичной цепи ИБП, но реально не предотвращает выход из стоя выпрямительных диодов и ключевых транзисторов при перегрузках по выходу.

Входной помехоподавляющий фильтр предотвращает проникновение высокочастотных импульсных помех из сети в ИБП и из ИБП в сеть, но на практике очень часто встречается что производители (они же китайцы) в целях экономии не ставят фильтр, хотя место для него предусмотрено, а обмотки Др1 заменяют перемычками, тем самым ухудшая ЕМС вокруг. Благодаря китайской экономии на деталях фильтров питания, сейчас уровень шума в городе на диапазонах 160 и 80 м достигает 57 – 59 по шкале S-метра приемника, это исключает возможность нормального приема в городских условиях на данных диапазонах.

Ключевой преобразователь напряжения с импульсным силовым трансформатором (силовой инвертор) построен по двухтактной полумостовой схеме, основное различие заключается в схемотехнических решениях построения базовых цепей силовых ключевых транзисторов. Конфигурация базовых цепей определяется типом схемы запуска ИБП.

Выходной выпрямитель с фильтром построен примерно по одной и той же схеме (Рис. 4) с незначительными вариациями. Выпрямители построены по двухполупериодной схеме со средней точкой, этим обеспечивается симметричный режим перемагничивания сердечника импульсного силового трансформатора Тр. Для уменьшения динамических коммутационных потерь в сильноточных каналах выпрямителей + 12 и + 5 В в качестве выпрямительных элементов используются диодные сборки из двух диодов Шоттки VD3 и VD4, так как они имеют очень маленькое время переключения, а прямое падение напряжения на диоде Шоттки составляет 0,3 – 0,4 В, что в отличие от обычного кремневого диода (прямое падение напряжения на котором составляет 0,8 – 1,2 В) при токе нагрузки 10 – 20 А дает выигрыш в КПД ИБП. Все выпрямленные напряжения сглаживаются LC фильтрами, который начинается с индуктивности. Обмотки дросселя для выпрямителей + 5, – 5, + 12 и – 12 В обычно наматывают на одном магнитопроводе.

ИБП вырабатывает основные напряжения +5 В, -5 В, +12 В, -12 В, в новых блоках АТХ еще + 3,3 В, сигнал Power good (PG) и др. Нас в первую очередь интересует канал выработки напряжения +12 В, с ним мы в основном и будем работать. Выходные напряжения ИБП подаются к узлам и блока компьютера с помощью разноцветных проводов, собранных в жгуты.

Шестиконтактные разъемы (отсутствуют в ИБП ряда АТХ) имеют следующую цветовую маркировку:

И так рассмотрим случай, когда АКБ еще не подсоединена. Напряжение сети переменного тока подается через терморезистор TR1, сетевой плавкий предохранитель FU1, помехоподавляющий фильтр к выпрямителю на диодной сборке VDS1. Выпрямленное напряжение сглаживается фильтром на конденсаторах С6, С7, на выходе выпрямителя получается напряжение + 310 В. Это напряжение подается к преобразователю напряжения на мощных ключевых транзисторах VT3, VT4 с импульсным силовым трансформатором Тр2. Сразу же оговоримся, что для нашего зарядного устройства резисторы R26, R27, предназначенные для приоткрывания транзисторов VT3, VT4, отсутствуют. Переходы база-эмиттер транзисторов VT3, VT4 зашунтированы цепями R21R22 и R24R25, соответственно, вследствие чего, транзисторы закрыты, преобразователь не работает, выходное напряжение отсутствует.При подсоединении АКБ к выходным клеммам Кл1 и Кл2, при этом загорается светодиод VD12, напряжение подается через цепочку VD6R16 к выводу №12 для питания микросхемы МС1 и через цепочку VD5R12 к средней обмотке согласующего трансформатора Тр1 драйвера на транзисторах VT1, VT2. Управляющие импульсы с выводов 8 и 11 чипа МС1 поступают на драйвер VT1, VT2, и через согласующий трансформатор Тр1 к базовым цепям силовых ключевых транзисторов VT3, VT4, открывая их поочередно.Переменное напряжение с вторичной обмотки силового трансформатора Тр2 канала выработки напряжения + 12 В поступает на двухполупериодный выпрямитель на сборке из двух диодов Шоттки VD11. Выпрямленное напряжение сглаживается LC фильтром L1C16 и поступает к выходным клеммам Кл1 и Кл2. С выхода выпрямителя также питается штатный вентилятор М1, предназначенный для охлаждения деталей ИБП, включенный через гасящий резистор R33 для уменьшения скорости вращения лопастей и шума вентилятора. АКБ через клемму Кл2 подключена к минусу выхода выпрямителя ИБП через резистор R17. При протекании тока заряда от выпрямителя к АКБ, на резисторе R17 образуется падение напряжения, которое подается к выводу №16 одного из компараторов микросхемы МС1. При превышении тока заряда больше установленного уровня (движком резистора установки тока заряда R4), микросхема МС1 увеличивает паузу между выходными импульсами, уменьшая ток в нагрузку и тем самым стабилизируя ток зарядки АКБ.Цепь R14R15 стабилизации выходного напряжения R14R15 подключена к выводу №1 второго компаратора микросхемы МС1, предназначена для ограничения его значения (на уровне + 14,2 – + 16 В) в случае отсоединения АКБ. При увеличении выходного напряжения выше установленного уровня, микросхема МС1 увеличит паузу между выходными импульсами, тем самым стабилизируя напряжения на выходе.Микроамперметр РА1, с помощью переключателя SA1 подключается к разным точкам выпрямителя ИБП, используется для измерения тока заряда и напряжения на АКБ.В качестве ШИМ-регулятора управления МС1 используется микросхема типа TL494 или ее аналоги: IR3M02 (SHARP, Япония), µА494 (FAIRCHILD, США), КА7500 (SAMSUNG, Корея), МВ3759 (FUJITSU, Япония, КР1114ЕУ4 (Россия).Отпаиваем все провода с выходных разъемов, оставляем по пять проводов желтого цвета (канал выработки напряжения +12 В) и пять проводов черного цвета (GND, корпус, земля), по четыре провода каждого цвета скручиваем вместе и спаиваем, эти концы впоследствии будут подпаяны к выходным клеммам ЗУ. Снимаем переключатель 115/230V и гнезда для подсоединения шнуров. На месте верхнего гнезда устанавливаем микроамперметр РА1 на 150 – 200 мкА от кассетных магнитофонов, например М68501, М476/1. Родная шкала снята, вместо нее установлена самодельная шкала, изготовленная с помощью программы FrontDesigner_3.0, файлы шкал можно скачать с сайта журнала . Место нижнего гнезда закрываем жестью размерами 45×25 мм и сверлим отверстия для резистора R4 и переключателя рода измерений SA1. На задней панели корпуса устанавливаем клеммы Кл 1 и Кл 2.Также, нужно обратить внимание на размер силового трансформатора, (на плате – тот который побольше), на нашей схеме (Рис. 5) это Тр 2. От него зависит максимальная мощность блока питания. Высота его должна быть не менее 3 см. Встречаются блоки питания с трансформатором высотой менее 2 см. Мощность таких 75 Вт, даже если написано 200 Вт .В случае переделки ИБП типа АТ снимаем резисторы R26, R27 приоткрывающие транзисторы ключевого преобразователя напряжения VT3, VT4. В случае переделки ИБП типа АТХ снимаем с платы детали дежурного преобразователя. Выпаиваем все детали кроме: цепей помехоподавляющего фильтра, высоковольтного выпрямителя VDS1, C6, C7, R18, R19, инвертора на транзисторах VT3, VT4, их базовых цепей, диодов VD9, VD10, цепей силового трансформатора Тр2, С8, С11, R28, драйвера на транзисторах VT3 или VT4, согласующего трансформатора Тр1, деталей С12, R29, VD11, L1, выходного выпрямителя, согласно схемы (Рис. 5). У нас должна получиться плата примерно такого вида (Рис. 6). Даже если в качестве управляющего ШИМ-регулятора, переделываемого ИБП, используется микросхема типа DR-B2002, DR-B2003, DR-B2005, WT7514 или SG6105D проще их снять и сделать с нуля на TL494. Блок управления А1 изготавливаем в виде отдельной платы (Рис. 7). Штатная диодная сборка в выпрямителе +12 В рассчитана на слишком слабый ток (6 – 12 А) – ее использовать не желательно, хотя для зарядного устройства вполне допустимо. На ее место можно установить диодную сборку из 5-ти вольтового выпрямителя (там она на больший ток рассчитана, но имеет обратное напряжение всего 40 В). Так как в некоторых случаях обратное напряжение на диодах в выпрямителе +12 В достигает значения 60 В! , лучше установить сборку на диодах Шоттки на ток 2×30 А и обратное напряжение не менее 100 В, например, 63CPQ100, 60CPQ150 .Конденсаторы выпрямителя 12-вольтовой цепи заменяем на рабочее напряжение 25 В (16-ти вольтовые нередко вздувались). Индуктивность дросселя L1 должна быть в диапазоне 60 – 80 мкГн, его обязательно отпаиваем и измеряем индуктивность, часто попадались экземпляры и на 35 – 38 мкГн, с ними ИБП работает неустойчиво, жужжит при увеличении тока нагрузки больше 2 А. При слишком большой индуктивности, более 100 мкГн, может произойти пробой по обратному напряжению сборки диодов Шотки, если она была взята из 5-ти вольтового выпрямителя. Для улучшения охлаждения обмотки выпрямителя +12 В и кольцевого сердечника снимаем неиспользуемые обмотки для выпрямителей -5 В, -12 В и +3,3 В. Возможно придется домотать до оставшейся обмотки несколько витков провода до получения требуемой индуктивности (Рис. 8). Если ключевые транзисторы VT3, VT4 были неисправными, а оригинальные не удается приобрести, то можно установить более распространенные транзисторы типа MJE13009. Транзисторы VT3, VT4 прикручены к радиатору, как правило, через изоляционную прокладку. Необходимо транзисторы снять и для увеличения теплового контакта, с обеих сторон прокладку промазать термопроводящей пастой. Диоды VD1 – VD6 рассчитанные на прямой ток не менее 0,1 А и обратное напряжение не менее 50 В, например КД522, КД521, КД510.Все электролитические конденсаторы на шине +12 В заменяем на напряжение 25 В. При монтаже также надо учесть, что резисторы R17 и R32 в процессе работы блока нагреваются, их надо расположить поближе к вентилятору и подальше от проводов.Светодиод VD12 можно приклеить к микроамперметру РА1 сверху для освещения его шкалы.При наладке ЗУ желательно воспользоваться осциллографом, он позволит увидеть импульсы в контрольных точках и поможет нам значительно сэкономить время. Проверяем монтаж на наличие ошибок. К выходным клеммам подключаем аккумуляторную батарею (далее – АКБ). В первую очередь проверяем наличие генерации на выводе №5 генератора пилообразного напряжения МС (Рис. 9).Проверяем наличие указанных напряжений согласно схемы (Рис. 5)на выводах №2, №13 и №14 микросхемы МС1. Движок резистора R14 устанавливаем в положение максимального сопротивления, и проверяем наличие импульсов на выходе микросхемы МС1, на выводах №8 и №11 (Рис. 10). Также проверяем форму сигнала между выводах №8 и №11 МС1 (Рис. 11), на осциллограмме видим паузу между импульсами, отсутствие симметрии импульсов может говорить о неисправности базовых цепей драйвера на транзисторах VT1, VT2.Проверяем форму импульсов на коллекторах транзисторов VT1, VT2 (Рис. 12), а также форму импульсов между коллекторами этих транзисторов (Рис. 13).Отсутствие симметрии импульсов может говорить о неисправности самих транзисторов VT1, VT2, диодов VD1, VD2, перехода база-эмиттер транзисторов VT3, VT4 или их базовых цепей. Иногда пробой перехода база-эмиттер транзистора VT3 или VT4 приводит к выходу из строя резисторов R22, R25, диодного моста VDS1 и только потом к перегоранию предохранителя FU1.Левый, по схеме, вывод резистора R14 подключаем в источнику образцового напряжения на 16 В (почему именно 16 В – чтобы скомпенсировать потери в проводах и на внутреннем сопротивлении сильно сульфатированной АКБ, хотя можно и 14,2 В). Уменьшая сопротивление резистора R14 до момента пропадания импульсов на выводах №8 и №11 МС, точнее в этот момент пауза становится равной полупериоду повторения импульсов.Правильно собранное, без ошибок, устройство запускается сразу, но в целях безопасности вместо сетевого предохранителя включаем лампу накаливания напряжением 220 В мощностью 100 Вт, она будет служить нам балластным резистором и в аварийной ситуации спасет детали схемы ИБП от повреждения. Движок резистора R4 устанавливаем в положение минимального сопротивления, включаем зарядное устройство (ЗУ) в сеть, при этом лампа накаливания должна кратковременно вспыхнуть и погаснуть. При работе ЗУ на минимальном токе нагрузки радиаторы транзисторов VT3, VT4 и диодной сборки VD11 практически не нагреваются. При увеличении сопротивления резистора R4 начинает возрастать ток зарядки, при каком-то уровне вспыхнет лампа накаливания. Ну, вот и все, можно снимать ламу и ставить на место предохранитель FU1. В случае если вы все-таки решились установить диодную сборку из 5-ти вольтового выпрямителя (повторимся, что она рассчитана, но обратное напряжение всего 40 В!), включаем ИБП в сеть на одну минуту, а движком резистором R4 устанавливаем ток в нагрузку 2 – 3 А, выключаем ИБП. Радиатор с диодной сборкой должен быть теплым, но ни в коем случае горячим. Если он горячий – значит, данная диодная сборка в данном ИБП долго не проработает и обязательно выйдет из строя. Проверяем ЗУ на максимальном токе в нагрузку, для этого удобно использовать устройство , подключенное параллельно АКБ, которое позволит не испортить батарею длительными зарядами во время наладки ЗУ. Для увеличения максимального тока зарядки, можно несколько увеличить сопротивления резистора R4, но при этом не следует превышать максимальную мощность на которую рассчитан ИБП.Подбором сопротивлений резисторов R34 и R35 устанавливаем пределы измерения для вольтметра и амперметра соответственно.Монтаж собранного устройства показан на (Рис. 14). Теперь можно закрывать крышку. Внешний вид ЗУ показан на (Рис. 15). Шкалы РА1 для ЗУ ИБП: ▼ Shkaly-dlya-ampermetra-8-12-16-20A.7z | Файл 7,3 Kb загружен 194 раз.

23-09-2014 Свою печатку прислал Сергей (Chugunov). Печатка еще не проверялась сборкой. ▼ TL494-Sergey-Kuznecov.7z | Файл 13,63 Kb загружен 261 раз.

Спасибо, Сергей!

25-09-2014 Чертёж ПП под smd от Андрей (UR5YFE).

▼ tl494board4atx-Andrey-UR5YFE.7z | Файл 21,35 Kb загружен 216 раз. Спасибо, Андрей!1. В. Мельничук. Переделка компьютерного блока питания // Радиомир. – 2012. - №5, стр. 181. В. Мельничук. Компьютерный блок питания с регулируемым выходным напряжением // Электрик. – 2012. - №12, стр. 662. А. Головков, В. Любицкий. Блоки питания для системных модулей типа IBM PC-XT/AT // М.: ЛАД и Н, 1995. – 90 с.: ил.

3. Еще раз о переделке БП от PC-ATX. Форум cqham.ru

4. Источник из БП от РС 5. Лабораторный блок питания из БП АТ 6. //www.chirio.com7. В. Мельничук. Имитатор автомобильного аккумулятора // Электрик.

Василий Мельничук (korjavy)

Украина, г. Черновцы

Когда то был связистом.

Понравилось? Палец вверх!

datagor.ru

Автомобильное зарядное устройство из блока питания компьютера

Поскольку тема с зарядкой автомобильных аккумуляторов всегда актуальна, я вам хочу рассказать, как сделать зарядное устройство из блока питания компьютера. Особой сложностью технология изготовления не отличается, зато вы сможете всегда подзарядить аккумулятор, если потребуется. Да и изготовить прибор вы сможете самостоятельно в домашних условиях.

Блок питания ПК вам подойдет практически любой, мощность которого будет даже сто пятьдесят ватт. Когда вы достанете из системника этот блок, вы увидите пучок проводов. Все они вам не понадобятся. Отрежьте все лишнее, оставив только выход плюсового провода напряжением в двенадцать вольт. Затем нужно отпаять резистор, функция которого заключается в понижении напряжения до двенадцати вольт. Его обнаружить достаточно просто. Он проходит по цепи нужного нам провода на микросхему через два резистора. Не уверен точно, но, скорее всего, такая картина наблюдается в каждом блоке питания.

Вместо удаленного резистора припаяйте потенциометр, номинал его должен быть ниже изъятой детали. Это необходимо для того, чтобы зарядное устройство из блока питания компьютера позволяло регулировать ток. Наша задача - добиться напряжения тока на выходе в пятнадцать вольт, и чтобы диапазон силы тока мог изменяться от нуля до шести ампер в час. Как вы понимаете, такие показатели просто идеальны для любого аккумулятора, и наше простое зарядное устройство также сможет их обеспечить.

Идем дальше. На блоке питания имеется всего один зеленый провод, который служит для включения. Мы должны припаять его к корпусу на минус. Что касается вентилятора, то его необходимо будет развернуть таким образом, чтобы воздух нагнетался вовнутрь. Вам также потребуется приобрести какой-нибудь амперметр и добавить его в цепь. По нему можно будет получать сведения о текущей силе подающегося тока на аккумулятор.

Расскажу, как именно у меня получилось зарядное устройство из блока питания компьютера. Новый потенциометр, который был припаян вместо резистора, у меня находился закрепленным на корпусе. Амперметр я прикрепил с противоположной стороны. Для зажимов, которые цепляются на клеммы, я использовал металлические бельевые прищепки. Они отлично проводят ток и имеют хорошую силу сцепления для того, чтобы удерживаться на клеммах. Также можно приобрести специальные так называемые крокодилы. Некоторые люди успешно использовали для этой цели специальные прищепки-зажимы для портьер.

Итак, предлагаю подытожить результаты этой затеи, а именно: какие плюсы и минусы будет иметь наше зарядное устройство из блока питания компьютера. Преимущества в том, что вам не придется тратить какие-либо финансовые средства для этой цели. Надеюсь, какой-нибудь старый блок питания от компьютера вы найти сумеете. Поскольку в этих устройствах применяются импульсные трансформаторы, то вся конструкция не будет такой громоздкой и тяжелой, как в традиционных штатных. Что касается недостатков, то он всего один. Вы будете слышать шум от работающего вентилятора.

fb.ru

Сделать зарядное устройство с помощью блока питания компьютера.

Включаем БП, убеждаемся в его работоспособности.

Печатная плата и схема расположения элементов ограничителя тока

В заводском исполнении обмотка дросселя +12В намотана одножильным проводом диаметром 1,3 мм. Частота ШИМ – 42 кГц, при ней глубина проникновения тока в медь составляет около 0,33 мм. Из-за скин-эффекта на данной частоте эффективное сечение провода составляет уже не 1,32 мм2, а только 1 мм2, что недостаточно для тока в 16А. Иными словами, простое увеличение диаметра провода для получения большего сечения, а следовательно, уменьшения плотности тока в проводнике неэффективно для этого диапазона частот. К примеру, для провода диаметром 2 мм эффективное сечение на частоте 40 кГц только 1,73мм2, а не 3,14 мм2, как ожидалось. Для эффективного использования меди намотаем обмотку дросселя литцендратом. Литцендрат изготовим из 11 отрезков эмалированного провода длиной 1,2м и диаметром 0,5мм. Диаметр провода может быть и другим, главное, чтобы он был меньше удвоенной глубины проникновения тока в медь – в этом случае сечение провода будет использовано на 100%. Провода складываются в «пучок» и скручиваются с помощью дрели или шуруповёрта, после чего жгут продевается в термоусадочную трубку диаметром 2 мм и обжимается с помощью газовой горелки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

avtomag329km.ru

Зарядное устройство на основе блока питания ATX

У компьютерного блока питания, наряду с такими преимуществами, как малые габариты и вес при мощности от 250 Вт и выше, есть один существенный недостаток – отключение при перегрузке по току. Этот недостаток не позволяет использовать БП в качестве зарядного устройства для автомобильного аккумулятора, поскольку у последнего в начальный момент времени зарядный ток достигает нескольких десятков ампер. Добавление в БП схемы ограничения тока позволит избежать его отключения даже при коротком замыкании в цепях нагрузки.

Зарядка автомобильного аккумулятора происходит при постоянном напряжении. При этом методе в течение всего времени заряда напряжение зарядного устройства остается постоянным. Заряд аккумулятора таким методом в ряде случаев предпочтителен, так как он обеспечивает более быстрое доведение батареи до состояния, позволяющего обеспечить запуск двигателя. Сообщаемая на первоначальном этапе заряда энергия тратится преимущественно на основной зарядный процесс, то есть на восстановление активной массы электродов. Сила зарядного тока в первоначальный момент может достигать 1,5С, однако для исправных, но разряженных автомобильных аккумуляторов такие токи не принесут вредных последствий, а наиболее распространённые БП ATX мощностью 300 – 350 Вт не в состоянии без последствий для себя отдать ток более 16 – 20А.

Максимальный (начальный) зарядный ток зависит от модели используемого БП, минимальный ток ограничения 0,5А. Напряжение холостого хода регулируется и для заряда стартёрного аккумулятора может составлять 14…14,5В.

Вначале необходимо доработать сам БП, отключив у него защиты по превышению напряжений +3,3В, +5В, +12В, -12В, а также удалив неиспользуемые для зарядного устройства компоненты.

Для изготовления ЗУ выбран БП модели FSP ATX-300PAF. Схема вторичных цепей БП рисовалась по плате, и несмотря на тщательную проверку, незначительные ошибки, к сожалению, не исключены.

На рисунке ниже представлена схема уже доработанного БП.

Для удобной работы с платой БП последняя извлекается из корпуса, из неё выпаиваются все провода цепей питания +3,3V, +5V, +12V, -12V, GND, +5Vsb, провод обратной связи +3,3Vs, сигнальная цепь PG, цепь включения БП PSON, питание вентилятора +12V. Вместо дросселя пассивной коррекции коэффициента мощности (установлен на крышке БП) временно впаивается перемычка, провода питания ~220V, идущие от выключателя на задней стенке БП, выпаиваются из платы, напряжение будет подаваться сетевым шнуром.

В первую очередь деактивируем цепь PSON для включения БП сразу после подачи сетевого напряжения. Для этого вместо элементов R49, C28 устанавливаем перемычки. Убираем все элементы ключа, подающего питание на трансформатор гальванической развязки Т2, управляющего силовыми транзисторами Q1, Q2 (на схеме не показаны), а именно R41, R51, R58, R60, Q6, Q7, D18. На плате БП контактные площадки коллектора и эмиттера транзистора Q6 соединяются перемычкой.

После этого подаем ~220V на БП, убеждаемся в его включении и нормальной работе.

Далее отключаем контроль цепи питания -12V. Удаляем с платы элементы R22, R23, C50, D12. Диод D12 находится под дросселем групповой стабилизации L1, и его извлечение без демонтажа последнего (о переделке дросселя будет написано ниже) невозможно, но это и не обязательно.

Удаляем элементы R69, R70, C27 сигнальной цепи PG.

Включаем БП, убеждаемся в его работоспособности.

Затем отключается защита по превышению напряжения +5В. Для этого выв.14 FSP3528 (контактная площадка R69) соединяется перемычкой с цепью +5Vsb.

На печатной плате вырезается проводник, соединяющий выв.14 с цепью +5V (элементы L2, C18, R20).

Выпаиваются элементы L2, C17, C18, R20.

Включаем БП, убеждаемся в его работоспособности.

Отключаем защиту по превышению напряжения +3,3В. Для этого на печатной плате вырезаем проводник, соединяющий выв.13 FSP3528 с цепью +3,3V (R29, R33, C24, L5).

Удаляем с платы БП элементы выпрямителя и магнитного стабилизатора L9, L6, L5, BD2, D15, D25, U5, Q5, R27, R31, R28, R29, R33, VR2, C22, C25, C23, C24, а также элементы цепи ООС R35, R77, C26. После этого добавляем делитель из резисторов 910 Ом и 1,8 кОм, формирующий из источника +5Vsb напряжение 3,3В. Средняя точка делителя подключается к выв.13 FSP3528, вывод резистора 931 Ом (подойдёт резистор 910 Ом) - к цепи +5Vsb, а вывод резистора 1,8 кОм - к «земле» (выв. 17 FSP3528).

Далее, не проверяя работоспособность БП, отключаем защиту по цепи +12В. Отпаиваем чип-резистор R12. В контактной площадке R12, соединённой с выв. 15 FSP3528 сверлится отверстие 0,8 мм. Вместо резистора R12 добавляется сопротивление, состоящее из последовательно соединённых резисторов номинала 100 Ом и 1,8 кОм. Один вывод сопротивления подсоединяется к цепи +5Vsb, другой – к цепи R67, выв. 15 FSP3528.

Отпаиваем элементы цепи ООС +5V R36, C47.

После удаления ООС по цепям +3,3V и +5V необходимо пересчитать номинал резистора ООС цепи +12V R34. Опорное напряжение усилителя ошибки FSP3528 равно 1,25В, при среднем положении регулятора переменного резистора VR1 его сопротивление составляет 250 Ом. При напряжении на выходе БП в +14В, получаем: R34 = (Uвых/Uоп - 1)*(VR1+R40) = 17,85 кОм, где Uвых, В – выходное напряжение БП, Uоп, В – опорное напряжение усилителя ошибки FSP3528 (1,25В), VR1 – сопротивление подстроечного резистора, Ом, R40 – сопротивление резистора, Ом. Номинал R34 округляем до 18 кОм. Устанавливаем на плату.

Конденсатор C13 3300х16В желательно заменить на конденсатор 3300х25В и такой же добавить на место, освободившееся от C24, чтобы разделить между ними токи пульсаций. Плюсовой вывод С24 через дроссель (или перемычку) соединяется с цепью +12V1, напряжение +14В снимается с контактных площадок +3,3V.

Включаем БП, подстройкой VR1 устанавливаем на выходе напряжение +14В.

После всех внесённых в БП изменений переходим к ограничителю. Схема ограничителя тока представлена ниже.

Резисторы R1, R2, R4…R6, соединённые параллельно, образуют токоизмерительный шунт сопротивлением 0,01 Ом. Ток, протекающий в нагрузке, вызывает на нём падение напряжения, которое ОУ DA1.1 сравнивает с опорным напряжением, установленным подстроечным резистором R8. В качестве источника опорного напряжения используется стабилизатор DA2 с выходным напряжением 1,25В. Резистор R10 ограничивает максимальное напряжение, подаваемое на усилитель ошибки до уровня 150 мВ, а значит, максимальный ток нагрузки до 15А. Ток ограничения можно рассчитать по формуле I = Ur/0,01, где Ur, В – напряжение на движке R8, 0,01 Ом – сопротивление шунта. Схема ограничения тока работает следующим образом.

Выход усилителя ошибки DA1.1 подсоединён с выводом резистора R40 на плате БП. До тех пор, пока допустимый ток нагрузки меньше установленного резистором R8, напряжение на выходе ОУ DA1.1 равно нулю. БП работает в штатном режиме, и его выходное напряжение определяется выражением: Uвых=((R34/(VR1+R40))+1)*Uоп. Однако, по мере того, как напряжение на измерительном шунте из-за роста тока нагрузки увеличивается, напряжение на выв.3 DA1.1 стремится к напряжению на выв.2, что приводит к росту напряжения на выходе ОУ. Выходное напряжение БП начинает определяться уже другим выражением: Uвых=((R34/(VR1+R40))+1)*(Uоп-Uош), где Uош, В – напряжение на выходе усилителя ошибки DA1.1. Иными словами, выходное напряжение БП начинает уменьшаться до тех пор, пока ток, протекающий в нагрузке, не станет чуть меньше установленного тока ограничения. Состояние равновесия (ограничения тока) можно записать так: Uш/Rш=(((R34/(VR1+R40))+1)*(Uоп-Uош))/Rн, где Rш, Ом – сопротивление шунта, Uш, В – напряжение падения на шунте, Rн, Ом – сопротивление нагрузки.

ОУ DA1.2 используется в качестве компаратора, сигнализируя с помощью светодиода HL1 о включении режима ограничения тока.

Печатная плата (под "утюг") и схема расположения элементов ограничителя тока изображена на рисунках ниже.

Несколько слов о деталях и их замене. Электролитические конденсаторы, установленные на плате БП FSP, имеет смысл заменить на новые. В первую очередь в цепях выпрямителя дежурного источника питания +5Vsb, это С41 2200х10V и С45 1000х10V. Не забываем о форсирующих конденсаторах в базовых цепях силовых транзисторов Q1 и Q2 – 2,2х50V (на схеме не показаны). Если есть возможность, конденсаторы выпрямителя 220В (560х200V) лучше заменить на новые, большей ёмкости. Конденсаторы выходного выпрямителя 3300х25V должны быть обязательно с низким ЭПС – серии WL или WG, в противном случае они быстро выйдут из строя. В крайнем случае, можно поставить б/у конденсаторы этих серий на меньшее напряжение – 16В.

Прецизионный ОУ DA1 AD823AN «rail-to-rail» как нельзя кстати подходит к данной схеме. Однако его можно заменить на порядок более дешёвым ОУ LM358N. При этом стабильность выходного напряжения БП будет несколько хуже, также придется подбирать номинал резистора R34 в меньшую сторону, поскольку у этого ОУ минимальное выходное напряжение вместо нуля (0,04В, если быть точным) 0,65В.

Максимальная суммарная рассеиваемая мощность токоизмерительных резисторов R1, R2, R4…R6 KNP-100 равна 10 Вт. На практике лучше ограничиться 5 ваттами – даже при 50% от максимальной мощности их нагрев превышает 100 градусов.

Диодные сборки BD4, BD5 U20C20, если их действительно стоит 2шт., менять на что-либо более мощное не имеет смысла, обещанные производителем БП 16А они держат хорошо. Но бывает так, что в действительности установлена только одна, и в этом случае необходимо либо ограничиться максимальным током в 7А, либо добавить вторую сборку.

Испытание БП током 14А показало, что уже спустя 3 минуты температура обмотки дросселя L1 превышает 100 градусов. Долговременная безотказная работа в таком режиме вызывает серьёзное сомнение. Поэтому, если подразумевается нагружать БП током свыше 6-7А, дроссель лучше переделать.

В заводском исполнении обмотка дросселя +12В намотана одножильным проводом диаметром 1,3 мм. Частота ШИМ – 42 кГц, при ней глубина проникновения тока в медь составляет около 0,33 мм. Из-за скин-эффекта на данной частоте эффективное сечение провода составляет уже не 1,32 мм2, а только 1 мм2, что недостаточно для тока в 16А. Иными словами, простое увеличение диаметра провода для получения большего сечения, а следовательно, уменьшения плотности тока в проводнике неэффективно для этого диапазона частот. К примеру, для провода диаметром 2мм эффективное сечение на частоте 40 кГц только 1,73мм2, а не 3,14 мм2, как ожидалось. Для эффективного использования меди намотаем обмотку дросселя литцендратом. Литцендрат изготовим из 11 отрезков эмалированного провода длиной 1,2м и диаметром 0,5мм. Диаметр провода может быть и другим, главное, чтобы он был меньше удвоенной глубины проникновения тока в медь – в этом случае сечение провода будет использовано на 100%. Провода складываются в «пучок» и скручиваются с помощью дрели или шуруповёрта, после чего жгут продевается в термоусадочную трубку диаметром 2мм и обжимается с помощью газовой горелки.

Готовый провод целиком наматывается на кольцо, и изготовленный дроссель устанавливается на плату. Наматывать обмотку -12В смысла нет, индикатору HL1 «Питание» какой-либо стабилизации не требуется.

Остаётся установить плату ограничителя тока в корпус БП. Проще всего её прикрутить к торцу радиатора.

Подключим цепь «ООС» регулятора тока к резистору R40 на плате БП. Для этого вырежем часть дорожки на печатной плате БП, которая соединяет вывод резистора R40 с «корпусом», а рядом с контактной площадкой R40 просверлим отверстие 0,8мм, куда будет вставлен провод от регулятора.

Подключим питание регулятора тока +5В, для чего припаяем соответствующий провод к цепи +5Vsb на плате БП.

«Корпус» ограничителя тока присоединяется к контактным площадкам «GND» на плате БП, цепь -14В ограничителя и +14В платы БП выходят на внешние «крокодилы» для подключения к аккумулятору.

Индикаторы HL1 «Питание» и HL2 «Ограничение» закрепляются на месте заглушки, установленной вместо переключателя «110V-230V».

Скорее всего, в вашей розетке отсутствует контакт защитного заземления. Вернее, контакт, может быть, и есть, а вот провод к нему не походит. Про гараж и говорить нечего… Настоятельно рекомендуется хотя бы в гараже (подвале, сарае) организовать защитное заземление. Не стоит игнорировать технику безопасности. Это иногда заканчивается крайне плачевно. Тем, у кого розетка 220В не имеет контакта заземления, оборудуйте БП внешней винтовой клеммой для его подключения.

После всех доработок включаем БП и корректируем подстроечным резистором VR1 требуемое выходное напряжение, а резистором R8 на плате ограничителя тока – максимальный ток в нагрузке.

Подключаем к цепям -14В, +14В зарядного устройства на плате БП вентилятор 12В. Для нормальной работы вентилятора в разрыв провода +12В, либо -12В, включаются два последовательно соединённых диода, которые уменьшат напряжение питания вентилятора на 1,5В.

Подключаем дроссель пассивной коррекции коэффициента мощности, питание 220В от выключателя, прикручиваем плату в корпус. Фиксируем нейлоновой стяжкой выходной кабель зарядного устройства.

Прикручиваем крышку. Зарядное устройство готово к работе.

В заключение стоит отметить, что ограничитель тока будет работать с БП ATX (или AT) любого производителя, использующего ШИМ-контроллеры TL494, КА7500, КА3511, SG6105 или им подобным. Разница между ними будет заключаться лишь в методах обхода защит.

Ниже вы можете скачать печатную плату ограничителя в формате PDF и DWG (Autocad)

Список радиоэлементов

Скачать список элементов (PDF)

Прикрепленные файлы:

cxem.net

Зарядка из блока питания компьютера

Данный обзор посвящен тому, как изготовить зарядное устройство для аккумулятора из блока питания. Максимальное напряжение, которое должно обеспечивать зарядное устройство для автомобильного аккумулятора, не должно превышать 14,4 В. Максимальный ток определяется только самими возможностями зарядного устройства. В штатном режиме работы электрической системы автомобиля реализуется именно такой способ.

В данной статье процесс изготовления зарядки максимально упрощен. В ней не требуется использования транзисторов, самодельных печатных плат и других дополнительных элементов.

Для переделки используем блок питания обычного персонального компьютера, мощность которого составляет 230 Вт. По каналу 12 В можно потреблять ток, не превышающий 8 А. Вскрыв блок питания, внутри обнаружили микросхему UC 3843. Данная микросхема подключается не по типовой схеме. Она просто служит генератором импульсов. Функции регулятора напряжения на выходе возложены на другую микросхему – TL431, которая установлена на дополнительной плате. Так же на дополнительной плате расположен подстроечный резистор, который позволяет регулировать напряжение на выходе в узком диапазоне значений.

Прежде всего, чтобы переделать блок питания в зарядное устройство, необходимо убрать все лишнее, а именно:

Все выходные провода, за исключением пучка желтых проводов (+) и пучка черных проводов (0 В). - переключатель 220/110 В вместе с проводами. Достаточно просто отпаять провода от платы. Блок питания будет работать от сети напряжения 220В. Это устраняет возможность сжечь блок питания при случайном переключении в положение 110 В.

Далее необходимо сделать так, чтобы блок питания работал постоянно при подключении к сети. По умолчанию блок питания работает только в том случае, если замкнуть определенные провода в выходном пучке. Также необходимо устранить действие защиты от перенапряжения. Она отключает блок питания, когда выходное напряжение становится выше некоторого предела. Это необходимо сделать, поскольку на выходе вместо 12 В нам необходимо получить 14, 4. Встроенные защитные блоки воспринимают это как перенапряжение, и блок питания автоматически отключается.

Оказывается, сигналы действия защиты и «включение-отключение» проходят через один оптрон. Всего оптрона в устройстве три – они нужны для связи входной и выходной части блока питания. Для того чтобы блок работал постоянно и не был чувствителен к перенапряжению на выходе, нужно замкнуть контакты определенного оптрона с помощью перемычки. Теперь данный оптрон будет всегда находиться в включенном состоянии. Таким образом, блок питания теперь будет работать постоянно при подключении к сети вне зависимости от напряжения на входе.

Теперь установим на выходе блока питания напряжение в 14, 4В. Если заменить напряжение на выходе не удается при помощи подстроечного резистора, расположенного на дополнительной плате, то нужно заменить резистор, который подключен последовательно с подстроечным на резистором 2,7 кОм. Диапазон настройки таким образом сместится в большую сторону.

Теперь нужно удалить транзистор, который находится рядом с TL 431. Его предназначение нам неизвестно, но он может препятствовать работе самой микросхемы. Чтобы сделать выходное напряжение стабильным в холостом режиме, нужно на выходе блока добавить небольшую нагрузку по каналу 12 В и по каналу 5 В. Для дополнительной нагрузки по каналу +12В подойдет резистор на 200 Ом, а для канала +5В – на 68 Ом. Выходное напряжение на холостом ходу следует регулировать только после установки данных резисторов.

Всем привет! Также очень полезным данное устройство будет для зарядки гелевых АКБ, использующихся, например, в ИБП (источниках бесперебойного питания).

Схем подобного устройства в сети множество, но мое внимание привлекла именно эта.

Вкратце: устройство построено по топологии АТ и по принципу действия является стабилизатором тока с ограничением максимального напряжения на уровне 14,4 В. Ток заряда 10-12 А при соответствующем трансформаторе Т21, что более чем достаточно для аккумулятора авто…

Основное достоинство данной схемы, на мой взгляд, в том, что при превышении током заряда установленного уровня, схема работает как стабилизатор тока, снижая выходное напряжение и заряжая АКБ постоянным током.

По достижении установленного уровня напряжения, схема переходит в режим стабилизации напряжения, когда напряжение остается постоянным, а ток постепенно падает практически до нуля. Таким образом, не допускается “перезаряда” батареи…

Рис.1 Схема автоматического ЗУ

Также очень хотелось видеть напряжение и ток зарядки, не смотря на то, что автор схемы ЗУ отказался от индикатора. Были отобраны несколько вариантов вольтамперметр а, но выбор пал на вольтамперметр с ЖК-индикатором. Устройство «умеет» измерять напряжение до 32 В и ток до 12 А.

Рис.2 Вольтамперметр с ЖК-индикатором

В качестве индикатора решил использовать Winstar WH0802A-TMI.

Рис.3 ЖК-индикатор

Рис.4 Плата ЗУ

Плату вольтамперметра пришлось делать самому 🙂

Рис.5 Плата вольтамперметра

Все это дело собрал в кучу

Рис.6 Плата ЗУ в сборе

Рис.7 Вид сбоку

Рис.8 Плата ЗУ

Рис.9 Вольтамперметр

В заключение фото готового устройства:

Рис.10 Индикация после включения ЗУ

Левым регулятором выставляется напряжение. 14,4 В – среднее положение. Регулируется от 13 до 16 В. Правым регулятором устанавливается порог срабатывания защиты устройства…

Рис.11 Зарядка гелевой АКБ

Зарядное устройство из компьютерного блока питания для автомобильной аккумуляторной батареи можно собрать самостоятельно. И такой агрегат пользуется популярностью. Ведь на его подготовку требуется минимум средств. При этом получается эффективное ЗУ.

На состояние автоаккумуляторной батареи обращают внимание в зимний период. Ведь в это время плотность электролитического состава меняется, быстро теряется заряд. В результате, запуск двигателя усложняется. Для решения этой проблемы используют зарядные устройства.

Разработкой и сборкой зу для акб занимаются многие компании. Поэтому подобрать модель с требуемыми параметрами сможет каждый водитель. Такие модели отличаются обширным функционалом: тренировка источника питания, восстановление заряда, прочее. Их стоимость достаточно высока.

Поэтому автолюбителей интересует зарядное устройство для автомобильного аккумулятора, которое сконструировано из подручных агрегатов и элементов.

Преимущества самостоятельной сборки

  1. Использование подручных материалов, элементов. Поэтому расходы на изготовления сокращаются.
  2. Небольшой вес. Он не превышает 1,5–2 кг. Поэтому перемещать самодельный агрегат для восстановления заряда батареи несложно.
  3. Постоянное охлаждение. В состав блока питания включен вентилятор. Поэтому вероятность нагрева минимальна.

Какие сложности?

  1. Сконструированный преобразователь не всегда работает тихо. Периодически он издает звуки, которые похожи на звон, шипение.
  2. Не допускается контакт самодельной зарядки и корпуса автотранспортного средства. Если заряжаем с включением в сеть, то контакт провоцирует поломку преобразователя, КЗ.
  3. Подключение токопроводящих выводов аккумуляторной батареи к проводам выполняется точно. Если на этом этапе допущены ошибки, то вторичные цепи переделанного блока питания в зарядное устройство выходят из строя.
  4. Все контакты и элементы перед подключением проверяются. Только после этого компьютерный блок питания используется для зарядки.

Правила эксплуатации автоаккумулятора

Для поддержания автоаккумулятора в работоспособном состоянии недостаточно подготовить надежное зарядное устройство. Дополнительно выполняются и такие рекомендации:

  • Постоянная поддержка заряда. Аккумуляторный источник постоянно подзаряжается. При перемещении заряд поступает от генератора и других узлов автотранспорта. Если техника не эксплуатируется, то для восстановления заряда применяют ЗУ, как стационарного, так и портативного типа. Если батарея полностью разряжается, то специалисты рекомендуют проводить стремительное восстановление. В противном случае, запуститься процесс сульфатации свинцовых пластин.
  • Пределы напряжения (около 14 В). Напряжение, которое подается генератором, не должно чрезмерно превышать этот параметр. При этом не имеет особого значения тот факт, какой именно режим запущен. Если мотор не функционирует, то напряжение может снижаться до 12,6–13 В. При таких показателях применяют ЗУ с соответствующими параметрами и индикаторами.
  • Отключение потребителей при неработающем моторе. Если зажигание отключено, то и все устройства, фары отключаются. В противном случае, источник питания достаточно быстро потеряет заряд.
  • Подготовка автоаккумулятора. Перед восстановлением заряда с аккумуляторной батареи удаляют подтеки электролитического состава, пыль. Токопроводящие выводы очищаются от окислов, налета. Перед подачей напряжения тщательно проверяются соединения и провода. Ведь даже минимальные смещения провоцируют нарушения, проблемы.
  • В зимний период источник перемещают в теплое помещение. Ведь при отрицательной температуре электролитический состав становится плотным, густым. Это провоцирует ухудшение прохождения заряда.

Основные этапы изготовления ЗУ

Перед тем как сделать из бп компьютера надежный зарядник, изучаются требования техники безопасности, особенности работы с такими агрегатами. Ведь в первичных цепях блока питания пк присутствует напряжение.

Подготавливаем блок питания. Допускается использование отличающихся по мощности моделей. Чаще всего выполняется переделка компьютерного БП, мощность которого составляет 200–250 Вт.

После выбора модели выполняются последующие действия:

  • Из блока питания компьютера откручиваются болтики. Такие действия необходимы для последующего демонтажа крышки.
  • Определение сердечника, который входит в состав импульсного трансформатора. Его измеряют. Полученное значение удваивают. Для каждого элемента этот параметр индивидуален. При проведении тестов удалось выявить, что для получения мощности в 100 Вт требуется 0,95–1 см2. Ведь зарядка источника питания эффективна, если выдает 60–70 Вт.
  • В состав многих моделей БП входит такая схема, как TL494. Подобная схема вводится в состав разнообразных БП, которые представлены на продажу.

Подготовка схемы

Для подготовки зарядного устройства из компьютерного блока питания своими руками требуются определенные компоненты цепи (их отличительная особенность — +12В). Все остальные элементы изымаются. Для этого используют паяльник. Для упрощения процесса изучаются схемы, которые присутствуют на специальных порталах. На них изображены основные элементы, которые потребуются для БП.

Цепи с такими показателями, как -12В, -/+5 В, изымаются. Демонтируется и переключатель, при помощи которого изменяется напряжение. Выпаивается и схема, которая требуется для сигнала запуска.

Сделать зарядное устройство из БП несложно. Но для этого потребуются резисторы (R43 и R44), которые причислены к опорному типу. Показатели резистора R43 изменяются. В случае необходимости напряжение выходное меняется.

Специалисты рекомендуют заменять R43 на 2 резистора (переменный тип — R432, постоянный тип — R431). Внедрение таких резисторов облегчает процесс создания регулируемого элемента. С его помощью проще изменять силу тока, а также выходное напряжение. Это требуется для сохранения работоспособности автоаккумулятора.

Решая, как переделать БП, стоит сосредоточиться на конденсаторе. На выходной части выпрямителя сосредотачивается стандартный конденсатор. Мастера проводят его замену на элемент, который отличается большими показателями напряжения. Так, часто пользуются конденсатором марки С9.

Рядом с вентилятором, который используется для обдува, сосредотачивается резистор. Его заменяют резистором, который выделяется большим сопротивлением.

При подготовке ЗУ для аккумулятора меняется и расположение вентилятора. Ведь воздушная масса должна поступать в подготавливаемый блок питания.

Со схемы ликвидируют дорожки, которые предназначены для соединения массы, фиксации платы непосредственно к шасси.

Сконструированный блок питания с регулировкой подводят к сети с переменным током. Для этих целей используют стандартную лампу накаливания (производительность составляет 40–100 Вт).

Такие действия выполняются для того, чтобы проверить, насколько эффективная схема получилась. Без предварительного тестирования сложно установить, перегорит ли БП с заданной мощностью при резких изменениях напряжения.

Для правильной настройки БП для автомобильной аккумуляторной батареи требуется соблюдение определенных правил.

  • Введение индикаторов. Для отслеживания того, насколько зарядился автомобильный аккумулятор, используются индикаторы. В состав схемы вводят цифровые или же стрелочные индикаторы. Их легко приобрести в специализированных магазинах или же демонтировать со старой техники. Допускается введение нескольких индикаторов, с помощью которых отслеживается степень заряда, напряжение на токопроводящих выводах.
  • Корпус с креплением или ручками. Наличие такой детали способствует упрощению процесса эксплуатации ЗУ из БП.

К сборке ЗУ из БП портативного компьютера допускается при условии, что есть определенный опыт, знания в области электроники. Проводить какие-либо мероприятия, если нет соответствующей подготовки, запрещено. Ведь в процессе нужно контактировать с токопроводящими выводами, элементами, на которые подается напряжение, ток.

Видео про сборку зарядного из БП компьютера для ватомобильного акб

Рассказать в:

Введение.

Скопилось у меня много компьютерных БП, отремонтированных в качестве тренировки этого процесса, но для современных компьютеров уже слабоватых. Что с ними делать?

Решил несколько переделать в ЗУ для зарядки 12В автомобильных аккумуляторов.

Вариант 1.

Итак: начали.

Первым мне подвернулся под руку Linkworld LPT2-20. У этого зверька оказался ШИМ на м/с Linkworld LPG-899. Посмотрел даташит, схему БП и понял – элементарно!

Что оказалось просто шикарно – она питается от 5VSB, т.е наши переделки никак не повлияют на режим её работы. Ноги 1,2,3 используются для контроля выходных напряжений 3,3В, 5В и 12В соответственно в пределах допустимых отклонений. 4-я нога тоже является входом защиты и используется для защиты от отклонений -5В, -12В. Нам все эти защиты не просто не нужны, а даже мешают. Поэтому их надо отключить.

По пунктам:

Стадия разрушения на этом окончена, пора переходить к созиданию.


По большому счету ЗУ у нас уже готово, но в нем нет ограничения зарядного тока (хотя защита от КЗ работает). Для того чтобы ЗУ не давало на аккумулятор столько «сколько влезет» – добавляем цепь на VT1, R5, C1, R8, R9, R10. Как она работает? Очень просто. Пока падение напряжения на R8 подаваемое на базу VT1 через делитель R9, R10 не превышает порог открывания транзистора – он закрыт и не влияет на работу устройства. А вот когда он начинает открываться, то к делителю на R4, R6, R12 добавляется ветка из R5 и транзистора VT1, меняя тем самым его параметры. Это приводит к падению напряжения на выходе устройства и, как следствие, к падению зарядного тока. При указанных номиналах, ограничение начинает работать примерно с 5А, плавно понижая выходное напряжение с ростом тока нагрузки. Настоятельно рекомендую эту цепь не выбрасывать из схемы, иначе, при сильно разряженном аккумуляторе ток может быть настолько большим, что сработает штатная защита, или вылетят силовые транзисторы, или шоттки. И зарядить свой аккумулятор вы не сможете, хотя сообразительные автолюбители догадаются на первом этапе включить автомобильную лампу между ЗУ и аккумулятором чтобы ограничить зарядный ток.

VT2, R11, R7 и HL1 занимается «интуитивной» индикацией тока заряда. Чем ярче горит HL1 – тем больше ток. Можно не собирать, если нет желания. Транзистор VT2 – должен быть обязательно германиевый, потому что падение напряжения на переходе Б-Э у него значительно меньше, чем у кремниевого. А значит, и открываться он будет раньше чем VT1.

Цепь из F1 и VD1, VD2 обеспечивает простейшую защиту от переполюсовки. Очень рекомендую сделать её или собрать другую на реле или чём-нибудь ещё. Вариантов в сети можно найти много.

А теперь о том, зачем нужно оставить канал 5В. Для вентилятора 14,4В многовато, особенно с учетом того что при такой нагрузке БП не греется вообще, ну кроме сборки выпрямителя, она немного греется. Поэтому, мы подключаем его к бывшему каналу 5В (сейчас там - около 6В), и он тихо и нешумно выполняет свою работу. Естественно, с питанием вентилятора есть варианты: стабилизатор, резистор и т.п. В дальнейшем некоторые из них мы увидим.

Всю схему я свободно смонтировал на освобожденном от ненужных деталей месте, не делая никаких плат, с минимумом дополнительных соединений. Выглядело это всё после сборки так:


В итоге, что мы имеем?

Получилось ЗУ с ограничением максимального зарядного тока (достигается уменьшением подаваемого на аккумулятор напряжения при превышении порога в 5А) и стабилизированным максимальным напряжением на уровне 14,4В, что соответствует напряжению в бортовой сети автомобиля. Поэтому, его можно смело использовать, не отключая аккумулятор от бортовой электроники. Это зарядное устройство можно смело оставлять без присмотра на ночь, батарея никогда не перегреется. К тому же оно почти бесшумное и очень лёгкое.

Если вам максимального тока в 5-7А маловато (ваш аккумулятор бывает часто сильно разряжен), можно легко увеличить его до 7-10А, заменив резистор R8 на 0,1Ом 5Вт. Во втором БП с более мощной сборкой по 12В именно так я и сделал:


Вариант 2.

Следующим подопытным у нас будет БП Sparkman SM-250W реализованный на широко известном и горячо любимом ШИМ TL494 (КА7500).

Переделка такого БП ещё проще, чем на LPG-899, так как в ШИМ TL494 нет никаких встроенных защит по напряжениям каналов, зато есть второй компаратор ошибки, который зачастую свободен (как и в данном случае). Схема оказалась практически один к одному со схемой PowerMaster. Её я и взял за основу:

План действий:

Это был, пожалуй, самый экономичный вариант. Выпаянных деталей у вас останется гораздо больше чем затраченных J. Особенно если учесть что сборка SBL1040CT была извлечена из канала 5В, а туда были впаяны диоды, в свою очередь добытые, с канала -5В. Все затраты состояли из крокодилов, светодиода и предохранителя. Ну, можно ещё ножки приделать для красоты и удобства.

Вот плата в полном сборе:

Если вас пугают манипуляции с 15 и 16-й ногами ШИМ, подбор шунта с сопротивлением в 0,005Ом, устранение возможных сверчков, можно переделать БП на TL494 и несколько другим способом.

Вариант 3.

Итак: наша следующая «жертва» - БП Sparkman SM-300W. Схема абсолютно аналогична варианту 2, но имеет на борту более мощную выпрямительную сборку по 12В каналу, более солидные радиаторы. Значит - с него мы возьмем больше, например 10А.

Этот вариант однозначен для тех схем, где ноги 15 и 16 ШИМ уже задействованы и вы не хотите разбираться – зачем и как это можно переделать. И вполне пригоден для остальных случаев.

Повторим в точности пункты 1 и 2 из второго варианта.

Канал 5В, в данном случае, я демонтировал полностью.

Чтобы не пугать вентилятор напряжением в 14,4В - собран узел на VT2, R9, VD3, HL1. Он не позволяет превышать напряжение на вентиляторе более чем 12-13В. Ток через VT2 небольшой, нагрев транзистора тоже, можно обойтись без радиатора.

С принципом действия защиты от переполюсовки и схемы ограничителя зарядного тока и вы уже знакомы, но вот место его подключения здесь - иное.


Управляющий сигнал с VT1 через R4 заведен на 4-ю ногу KA7500B (аналог TL494). На схеме не отображено, но там должен был остаться от оригинальной схемы резистор в 10кОм с 4-й ноги на землю, его трогать не надо .

Действует это ограничение так. При небольших токах нагрузки транзистор VT1 закрыт и на работу схемы никак не влияет. На 4-й ноге напряжение отсутствует, так как она посажена на землю через резистор. А вот когда ток нагрузки растет, падение напряжения на R6 и R7 соответственно тоже растет, транзистор VT1 начинает открываться и совместно с R4 и резистором на землю они образуют делитель напряжения. Напряжение на 4-й ноге возрастает, а так как потенциал на этой ноге, согласно описанию TL494, непосредственно влияет на максимальное время открытия силовых транзисторов, то ток в нагрузке уже не растет. При указанных номиналах порог ограничения составил 9,5-10А. Основное отличие от ограничения в варианте 1, несмотря на внешнюю похожесть, резкая характеристика ограничения, т.е. при достижении порога срабатывания, напряжение на выходе спадает быстро.

Вот этот вариант в готовом виде:

Кстати, эти зарядки можно использовать и в качестве источника питания для автомагнитолы, переноски на 12В и других автомобильных устройств. Напряжение стабилизировано, максимальный ток ограничен, спалить что-нибудь будет не так то просто.

Вот готовая продукция:

Переделка БП под зарядное по такой методике – дело одного вечера, но для себя любимого времени не жалко?

Тогда позвольте представить:

Вариант 4.

За основу взято БП Linkworld LW2-300W на ШИМ WT7514L (аналог уже знакомой нам по первому варианту LPG-899).

Ну что ж: демонтаж ненужных нам элементов осуществляем согласно варианту 1, с той лишь разницей, что канал 5В тоже демонтируем – он нам не пригодится.

Здесь схема будет более сложной, вариант с монтажом без изготовления печатной платы в данном случае – не вариант. Хотя и полностью от него мы отказываться не будем. Вот приготовленная частично плата управления и сама жертва эксперимента ещё не отремонтированная:

А вот она уже после ремонта и демонтажа лишних элементов, а на втором фото с новыми элементами и на третьем её обратная сторона с уже проклеенными прокладками изоляции платы от корпуса.

То, что обведено на схеме рис.6 зеленой линией – собрано на отдельной плате, остальное было собрано на освободившемся от лишних деталей месте.

Для начала попробую рассказать: чем это зарядное отличается от предыдущих устройств, а уж потом расскажу какие детали, за что отвечают.

  • Включение зарядного происходит только при подключении к нему источника ЭДС (в данном случае аккумулятора), вилка при этом должна быть включена в сеть заблаговременно J.
  • Если по каким-либо причинам напряжение на выходе превысит 17В или окажется менее 9В – ЗУ отключается.
  • Максимальный ток заряда регулируется переменным резистором от 4 до 12А, что соответствует рекомендуемым токам заряда аккумуляторов от 35А/ч до 110А/ч.
  • Напряжение заряда регулируется автоматически 14,6/13,9В, либо 15,2/13,9В в зависимости от выбранного пользователем режима.
  • Напряжение питания вентилятора регулируется автоматически в зависимости от тока заряда в диапазоне 6-12В.
  • При КЗ или переполюсовке срабатывает электронный самовосстанавливающийся предохранитель на 24А, схема которого, с незначительными изменениями, была заимствована из разработки почетного кота победителя конкурса 2010г Simurga. Скорость в микросекундах не мерил (нечем), но штатная защита БП дернуться не успевает – он гораздо быстрее, т.е. БП продолжает работать как ни в чём не бывало, только вспыхивает красный светодиод срабатывания предохранителя. Искр, при замыкании щупов практически не видно, даже при переполюсовке. Так что очень рекомендую, на мой взгляд эта защита лучшая, по крайней мере из тех что я видел (хотя и немного капризная на ложные срабатывания в частности, возможно придётся посидеть с подбором номиналов резисторов).

Теперь, кто за что отвечает:

  • R1, C1, VD1 – источник опорного напряжения для компараторов 1, 2 и 3.
  • R3, VT1 – цепь автозапуска БП при подключении аккумулятора.
  • R2, R4, R5, R6, R7 – делитель опорных уровней для компараторов.
  • R10, R9, R15 – цепь делителя защиты от перенапряжения на выходе о которой я упоминал.
  • VT2 и VT4 с окружающими элементами – электронный предохранитель и токовый датчик.
  • Компаратор OP4 и VT3 с резисторами обвязки – регулятор оборотов вентилятора, информация о токе в нагрузке, как видите, поступает от токового датчика R25, R26.
  • И наконец, самое важное - компараторы с 1-го по 3-й обеспечивают автоматическое управление процессом заряда. Если аккумулятор достаточно сильно разряжен и хорошо «кушает» ток, ЗУ ведет заряд в режиме ограничения максимального тока установленного резистором R2 и равном 0,1С (за это отвечает компаратор ОР1). При этом, по мере заряда аккумулятора, напряжение на выходе зарядного будет расти и при достижении порога 14,6 (15,2), ток начнет уменьшаться. Вступает в работу компаратор ОР2. Когда ток заряда упадет до 0,02-0,03С (где С емкость аккумулятора а А/ч), ЗУ перейдет на режим дозаряда напряжением 13,9В. Компаратор OP3 используется исключительно для индикации, и никакого влияния на работу схемы регулировки не оказывает. Резистор R2 не просто меняет порог максимального тока заряда, но и меняет все уровни контроля режима заряда. На самом деле, с его помощью выбирается емкость заряжаемого аккумулятора от 35А/ч до 110А/ч, а ограничение тока это «побочный» эффект. Минимальное время заряда будет при правильном его положении, для 55А/ч примерно посередине. Вы спросите: «почему?», да потому что если, к примеру, при зарядке 55А/ч аккумулятора поставить регулятор в положение 110А/ч – это вызовет слишком ранний переход к стадии дозаряда пониженным напряжением. При токе 2-3А, вместо 1-1,5А, как задумывалось разработчиком, т.е. мной. А при выставлении 35А/ч будет мал начальный ток заряда, всего 3,5А вместо положенных 5,5-6А. Так что если вы не планируете постоянно ходить смотреть и крутить ручку регулировки, то выставляйте как положено, так будет не только правильнее, но и быстрее.
  • Выключатель SA1 в замкнутом состоянии переводит ЗУ в режим «Турбо/Зима». Напряжение второй стадии заряда повышается до 15,2В, третья остается без существенных изменений. Рекомендуется для заряда при минусовых температурах аккумулятора, плохом его состоянии или при недостатке времени для стандартной процедуры заряда, частое использование летом при исправном аккумуляторе не рекомендуется, потому что может отрицательно сказаться на сроке его службы.
  • Светодиоды, помогают ориентироваться, на какой стадии находится процесс заряда. HL1 – загорается при достижении максимально допустимого тока заряда. HL2 – основной режим заряда. HL3 – переход в режим дозаряда. HL4 – показывает что заряд фактически окончен и аккумулятор потребляет менее 0,01С (на старых или не очень качественных аккумуляторах до этого момента может и не дойти, поэтому ждать очень долго не стоит). Фактически аккумулятор уже хорошо заряжен после зажигания HL3. HL5 – загорается при срабатывании электронного предохранителя. Чтобы вернуть предохранитель в исходное состояние, достаточно кратковременно отключить нагрузку на щупах.

Что касается наладки. Не подключая плату управления или не запаивая в неё резистор R16 подбором R17 добиться напряжения 14,55-14,65В на выходе. Затем подобрать R16 таким, чтобы в режиме дозаряда (без нагрузки) напряжение падало до 13,8-13,9В.

Вот фото устройства в собранном виде без корпуса и в корпусе:

Вот собственно и всё. Зарядка была испытана на разных аккумуляторах, адекватно заряжает и автомобильный, и от UPS (хотя все мои зарядки заряжают любые на 12В нормально, потому что напряжение стабилизировано J). Но это побыстрее и ничего не боится, ни КЗ, ни переполюсовки. Правда, в отличие от предыдущих, в качестве БП использовать не получится (очень оно стремится управлять процессом и не хочет включаться при отсутствии напряжения на входе). Зато, его можно использовать в качестве зарядного для аккумуляторов резервного питания, вообще не отключая никогда. Заряжать будет в зависимости от степени разряда автоматически, а из-за малого напряжения в режиме дозаряда существенного вреда аккумулятору не принесет даже при постоянном включении. При работе, когда аккумулятор уже почти заряжен, возможен переход зарядного в импульсный режим заряда. Т.е. ток зарядки колеблется от 0 до 2А с интервалом от 1 до 6 секунд. Сначала, хотел было устранить это явление, но, почитав литературу – понял, что это даже хорошо. Электролит лучше перемешивается, и даже иногда способствует восстановлению потерянной емкости. Поэтому решил оставить так как есть.

Вариант 5.

Ну вот, попалось что-то новенькое. На этот раз LPK2-30 с ШИМ на SG6105. Такого «зверя» мне для переделки раньше мне ещё не попадалось. Но я вспомнил многочисленные вопросы на форуме и жалобы пользователей на проблемы по переделке блоков на этой м/с. И принял решение, хоть зарядка мне больше и не нужна, нужно победить эту м/с из спортивного интереса и на радость людям. А заодно и опробовать на практике, возникшую в моей голове идею оригинального способа индикации режима заряда.

Вот он, собственной персоной:

Начал, как обычно, с изучения описания. Обнаружил, что она похожа на LPG-899, но есть и некоторые отличия. Наличие 2-х встроенных TL431 на борту, вещь конечно интересная, но… для нас - несущественная. А вот отличия в цепи контроля напряжения 12В, и появление входа для контроля отрицательных напряжений, несколько усложняет нашу задачу, но в разумных пределах.

В результате раздумий и непродолжительных плясок с бубном (куда уж без них) возник вот такой проект:

Вот фото этого блока уже переделанного на один канал 14,4В, пока без платы индикации и управления. На втором его обратная сторона:

А это внутренности блока в сборе и внешний вид:

Обратите внимание, что основная плата была развернута на 180 градусов, от своего первоначального расположения, для того чтобы радиаторы не мешали монтажу элементов передней панели.

В целом это немного упрощённый вариант 4. Разница заключается в следующем:

  • В качестве источника для формирования «обманных» напряжений на входах контроля было взято 15В с питания транзисторов раскачки. Оно в комплекте с R2-R4 делает всё необходимое. И R26 для входа контроля отрицательных напряжений.
  • Источником опорного напряжения для уровней компаратора было взято напряжение дежурки, оно же питание SG6105. Ибо, большая точность, в данном случае, нам не нужна.
  • Регулировка оборотов вентилятора тоже была упрощена.

А вот индикация была немного модернизирована (для разнообразия и оригинальности). Решил сделать по принципу мобильного телефона: банка наполняющаяся содержимым. Для этого я взял двухсегментный светодиодный индикатор с общим анодом (схеме верить не надо – не нашёл в библиотеке подходящего элемента, а рисовать было лень L), и подключил как показано на схеме. Получилось немного не так как задумывал, вместо того чтобы средние полоски «g» при режиме ограничения тока заряда гасли, вышло, что они - мерцают. В остальном - всё нормально.

Индикация выглядит так:

На первом фото режим заряда стабильным напряжением 14,7В, на втором – блок в режиме ограничения тока. Когда ток станет достаточно низким, у индикатора загорятся верхние сегменты, и напряжение на выходе зарядного упадёт до 13,9В. Это можно увидеть на фото приведённом немного выше.

Так как напряжение на последней стадии всего 13,9В можно спокойно дозаряжать аккумулятор сколь угодно долго, вреда ему это не принесёт, потому что генератор автомобиля обычно даёт большее напряжение.

Естественно, в этом варианте можно использовать и плату управления из варианта 4. Обвязку GS6105 только нужно сделать так, как здесь.

Да, чуть не забыл. Резистор R30 устанавливать именно так - совсем не обязательно. Просто, у меня никак не выходило подобрать номинал впараллель к R5 или R22 чтобы получить на выходе нужное напряжение. Вот и вывернулся таким… нетрадиционным образом. Можно просто подобрать номиналы R5 или R22, как я делал в других вариантах.