Стрелочные приборы - индикаторы. Подключение VFD индикатора от старого советского магнитофона к компьютеру Как сделать вольтметр из индикатора магнитофона

Для визуальной оценки силы зарядного тока мне потребуется прибор для измерения силы тока – амперметр. Так как под рукой ничего толкового не нашлось, будем использовать то, что есть. И это «что есть» — обычный индикатор от старых совковых магнитол. Так как индикатор реагирует на очень малые токи, нужно изготовить для него шунт.

Шунт – это проводник, обладающий неким удельным сопротивлением, который подключают к устройству измерителя тока параллельно. При этом он пропускает через себя или шунтирует большую часть электрического тока. Вследствие чего, через устройство измерителя пройдет номинальный рассчитанный для него ток. Чтобы понять, как протекают токи в узлах схемы, изучаем законы Кирхгофа.

Для того, чтобы рассчитать шунт для амперметра, мне потребуются некоторые параметры измерительной головки (индикатора): сопротивление рамки (Rрам ), значение тока, при котором стрелка индикатора максимально отклоняется (Iинд ) и верхнее значение тока, которое должен измерять в будущем индикатор (Imax ). За максимальный измеряемый ток берем 10 А. Теперь нужно определить Iинд, что достигается экспериментально. Но для этого нужно собрать небольшую электрическую схему.

При помощи резистора R1 добиваемся максимального отклонения стрелки индикатора и снимаем эти показания с тестера PA1 . В моем случае Iинд= 0.0004 А. Сопротивление рамки Rрам замеряем также при помощи тестера, которое составило 1кОм. Все параметры известны, остается теперь рассчитать сопротивление шунта амперметра (индикатора).

Расчет шунта для амперметра будем производить по следующим формулам:

Rш=Rрам * Iинд / Imax; получаем Rш=0,04 Ом.

Основное требование, предъявляемое к шунтам – это его способность пропускать токи, не вызывающие сильный его нагрев, т.е. обладать нормами по плотности электрического тока для проводников. В качестве шунтов используются различные материалы. Так как у меня под рукой нет «различного материала», я буду использовать старый добрый медный проводник.

Далее, исходя, что Rш=0,04 Ом, по справочнику удельных сопротивлений медных проводников подбираем соответствующий размер отрезка медного провода. Чем больше диаметр, тем лучше, но при этом увеличивается длина медного провода. Я «забью» на эти требования и выберу метровый отрезок. Главное для меня, чтобы мой шунт не расплавился, тем более, что больше 6А я его насиловать не буду. Выбранный медный проводник скручиваю в спираль и припаиваю параллельно к измерительной головке. Все, шунт готов. Теперь остается более точно подогнать сопротивление шунта и проградуировать шкалу измерителя. Делается это экспериментально.

Собственно, девайсы. Видон не очень, что уж там…

Наглядность - большое дело. Вот и народная мудрость гласит: - «Лучше раз увидеть, чем сто услышать». А в электронике, где протекающие процессы в работе того или иного устройства, подтверждаются зачастую косвенно, а то и вообще подразумеваются и даже берутся на веру, наглядное отображение вообще переоценить сложно. Недаром таким почитанием в среде радиолюбителей пользуются осциллографы, дающие возможность «заглянуть» даже внутрь процесса. Но не буду о сложном - разобраться бы с простым. Собрал почти десяток различных зарядных устройств, а для зарядки аккумуляторов использую всё больше простенький лабораторный блок питания, имеющий выходного напряжения и тока. Измерительные головки чётко информируют, сколько вольт и миллиампер идёт на заряжаемый аккумулятор. Вот только далеко не везде есть возможность их использовать, даже самые маленькие из них, зачастую всё равно будут непомерно большими для многих радиолюбительских самоделок. А вот стрелочные индикаторы от магнитофонов и других радиотехнических устройств прошлого века, которые не перевелись на базарах до сих пор, будут тут в самый раз. Вот некоторые из них:

Предназначен для работы в цепях постоянного тока, при любом положении шкалы. Ток полного отклонения (зависит от модели) 40 - 300 мкА. Внутреннее сопротивление 4000 Ом. Длина шкалы - 28 мм, масса 25 гр.

Предназначен для работы при вертикальном положении шкалы. Ток отклонения 220 - 270 мкА. Внутреннее сопротивление 2800 Ом. Размеры 49 х 45 х 32 мм. Длина шкалы - 34 мм.

предназначен для работы при любом положении шкалы. Ток полного отклонения не более 250мкА. Внутреннее сопротивление 1000 Ом. Размеры 21,5 х 60 х 60,5 мм. Масса 30 гр. Эти индикаторы и им подобные объединяет:

  • небольшой размер
  • простота конструкции
  • низкая стоимость
  • и, конечно же, принцип действия

Принцип действия основан на взаимодействии двух магнитных полей. Поля постоянного магнита и поля, образованного током, проходящим по бескаркасной рамке, которая состоит из большого числа (115 - 150) витков медного провода диаметром всего 8 - 9 микрон. Не вникая в нюансы можно назвать два основных действия, которые необходимо произвести для того, чтобы стало возможным использовать имеющийся индикатор:

  1. Оснастить его шунтом или добавочным сопротивлением (применяются для изменения верхнего предела измерения), в зависимости от того как будете его использовать (вольтметр / амперметр).
  2. Изготовить новую шкалу.

Обсудить статью СТРЕЛОЧНЫЕ ПРИБОРЫ - ИНДИКАТОРЫ

На днях мне напомнили об ещё одной идее для моддинга компьютера. Речь пойдет о том, как подключить люминесцентный (VFD) индикатор от советского магнитофона к компьютеру.

Когда-то, давным-давно, у меня был магнитофон Маяк 240-С1. В связи с моральным устареванием магнитофон был отправлен в утиль. Все что от него ценного осталось это электролюминесцентный индикатор, который у меня лежал-пылился. Когда-то, пару лет назад, я уже пытался установить его в компьютер, но он не подошел по дизайну.

Индикатор выглядит так:


А сегодня я расскажу как подключить такой или подобный индикатор к компьютеру.

Итак, начнем пожалуй с принципиальной схемы:

но полностью вся схема нам не нужна, нас интересует только часть

Как видно на схеме, питание у индикатора двойное: двухполярное ±15 вольт и переменное 5 вольт. Но индикатор сохраняет свою работоспособность при питании двухполярным напряжением ±12 вольт и постоянным напряжением +5вольт.

Подключим ХР1 следующим образом (обозначения согласно схеме):


1 - ноль
2 - +5
3 - +12
4 - -12
5 - ноль

Что-бы было удобнее подключать, я взял нерабочую и наполовину распаянную материнскую плату

и припаял провода с обратной стороны ATX разъема и подключил блок питания.

Теперь, когда на индикатор подведено питание надо подать на него какой-нибудь сигнал. В качестве источника сигнала я буду использовать mp3 плеер.

Схема подключения ХР2 очень простая (обозначения согласно схеме):

1 - левый канал
2 - правый канал
3 - индикатор типа ленты Fe
4 - индикатор системы шумопонижения ПШ
5 - индикатор типа ленты Cr
6 - индикатор включения микрофона
7 - индикатор включения громкоговорителей
8 - индикатор записи

Достав из своих запасов кабель для подключения CD-ROM привода к звуковой карте

И сняв с него родные разъемы я один конец припаял к плате индикатора, а на второй припаял 3,5мм jack

Вообще, этот серый кабель очень хорошее подспорье в таких случаях, ведь внутри изоляции идет экранированный двухканальный многожильный провод и для многих применений достаточная длинна. Вот только, к сожалению, в последнее время, очень часто эти кабеля идут не экранированные. Но что-то я отвлекся, продолжаем.

Измерение силы тока – достаточно важная процедура для расчета и проверки электрических схем. Если вы создаете прибор с потребляемой мощностью на уровне зарядки для мобильного телефона – для измерения достаточно обычного .

Типичный недорогой бытовой тестер имеет предел измерения силы тока 10 А.

На большинстве подобных приборов имеется дополнительный разъем для измерения больших величин. Переставляя измерительный кабель, вы, наверное не задумывались, по какой причине надо организовывать дополнительную цепь, и почему нельзя просто воспользоваться переключателем режимов?

Важно! Сами того не подозревая, вы задействовали шунт для амперметра.

Почему одним прибором нельзя измерять широкий диапазон величин?

Принцип работы любого амперметра (стрелочного или катушечного) основан на переводе измеряемой величины в визуальное ее отображение. Стрелочные системы работают по механическому принципу.

Через обмотку протекает ток определенной величины, заставляя ее отклоняться в поле постоянного магнита. На катушке закреплена стрелка. Остальное – дело техники. Шкала, разметка и прочее.

Зависимость угла отклонения от силы тока на катушке не всегда линейная, это часто компенсируется пружиной особой формы.

Для обеспечения точности измерения, шкала делается по возможности с большим количеством промежуточных делений. В таком случае, для обеспечения широкого предела измерений шкала должна быть огромного размера.

Или же надо иметь в арсенале несколько прибором: амперметр на десятки и сотни ампер, обычный амперметр, миллиамперметр.

В цифровых мультиметрах картина схожая. Чем точнее шкала – тем ниже предел измерения. И наоборот – завышенная величина предела, дает большую погрешность.

Слишком загруженной шкалой пользоваться неудобно. Большое количество положений усложняют конструкцию прибора, и увеличивают вероятность потери контакта.

Применив закон Ома для участка цепи, можно изменить чувствительность прибора, установив шунт для амперметра.

ХР1 R1 Ш R2* 51X

Как «растянуть» шка у вольтметра. Контролируя какое-то напряжение. иногда бывает нужно либо следить за его колебаниями, либо более точно измерить. Скажем, при эксплуатации автомобильной аккумуляторной батареи важно следить *а изменением ее напряжения в диапазоне 12.. Л 5 В. Именно этот диапазон желательно было бы разместить на всей шкале стрелочного индикатора вольтметра. Но. как вы знаете, отсчет на любом из диапазонов практиче- ски всех измерительных приборов идет от нулевого значения и добиться более высокой точности отсчета на интересующем участке невозможно.

И тем не менее существует способ «растяжки» практически любого участка шкалы (начало, середина, конец) вольтметра постоянного тока. Для этого нужно воспользоваться СВОЙСТВОМ стабилитрона открываться при определенном напряжении, равном напряжению стабилизации. К примеру, для растяжки конца шкалы диапазона 0...15 В достаточно использовать стабилитрон в такой же роли, что и в предыдущем эксперименте.

Взгляните на рис. 4. Стабилитрон VD1 включен последовательно с однопредельным вольтметром, составленным из стрелочного индикатора РА1 и до- бивочиого резистора R2. Как и в предыдущем эксперименте, стабилитрон «съедает» часть измеряемого напряжения, равного напряжению стабилизации В результате на вольтметр будет поступать напряжение, превышающее напряжение стабилизации.

ИРАДИСГ-НАЧИНАЮЩИМ«_

Это напряжение и станет своеобразным нулем отсчета, а зна чит, на шкале «растянется» лишь разници между наибольшим измеряемым напряжением и напряжением стабилизации стабилитрона.

Показанное на рисунке устройство рассчитано на контроль напряжении аккумуляторной батареи в диапазоне от 10 до 15 В. но этот диапазон можно изменить по желанию соответствующим подбором стабилитрона и резистора R2.

Каково назначение резистора R1? В принципе, он не обязате лен. Но без него, пока стабилитрон закрыт, стрелка имди катора остается на пулевой отметке. Введение же резистора позволяет наблюдать напряжение до 10 В на начальном участке шкалы, но этот участок будет сильно «сжат».

Собрав показанные на схеме детали и соединии их со стрелочным индикатором РА1 (микро амперметр М2003 с гоком полною отклонения стрелки 100 мкА и внутренним сопротивлением 450 Ом), подключают щупы ХР1 и ХР2 к блоку питания с регулируемым выходным напряжением. Плавно увеличивая напряжение до 9...9,5 В, заметите небольшое отклонение стрелки индикатора - всего на несколько делений в начале шкалы. Как только при дальнейшем увеличении напряжения оно превысит напряжение стабилизации, угол отклонения стрелки будет резко возрастать Примерно с напряжения 10,5 до 15 В стрелка пройдет почти всю шкалу.

Чтобы убедиться в роли резистора R1, отключите его н повторите эксперимент. До определенною входною напряжения стрелка индикатора останется на нулевой отметке.

Возможно, вас заинтересует подобный способ «растягивания» шкалы и вы захотите практически воплотить его для контроля других напряжений. Тогда придется воспользоваться простейшими расчетами. Исходными данными для них будут диапазон измерения напряжений (l)m>x), ток полного отклонения стрелки индикатора (11Пах), ток начальной точки отсчета (1шт) и соответствующее ему напряжение начала отсчета (UIIljn).

Для примера «расчитаем* наше устройство, показанное на схеме. Допустим, чго вся ткала прибора CImex= 100 мкА) предназначается для контроля напряжений от 10 до 15 В, но начало отсчета пойдет от деления, соответствующею току ЮмкА (1Ш)П=10 мкА), а значит, напряжению 10,5 В (Urnin= = 10,5 В).

Сначала определяем коэффициенты р и к, которые понадобятся для последующих операций:

P=lmi„/ln,«= 10/100=0,1; k=Um,„/Un,„>=)0.S/15=0,7.

Подсчитывает нужное напряжение стабилизации будущего стабилитрона:

UrT=Uninx(k-p)/(l-p) =

15*0,6/0,9=10 В.

Таким напряжением обладают стабилитроны Д810 и Д814В (см. справочную таблицу в статье «Стабилитрон»).

Определяем сопротивление резистора R2 в килоомах, выражая ток в миллиамперах. R2=U,nax(l-K)/lmils(l-p) =

15.0,3/0,1-0,9=50 кОм.

Вообще, из полученного значения следовало бы вычесть внутреннее сопротивление стрелочною индикатора (450 Ом), но делать это не обязательно сопротивление резистора R2 ведь подбирается практически при налаживании вольтметра.

В заключение определяют сопротивление резистора R1: Rl = Uer/p.lmax=10/0,1 = = 1000 кОм=1 МОм.

В. МАСЛАЕВ

г. Зеленоград