Li-ion и Li-polymer аккумуляторы в наших конструкциях. Схема зарядки li-ion аккумулятора от USB Можно ли заряжать литий-ионный аккумулятор без контроллера

Сегодня у многих пользователей скопилось по несколько рабочих и неиспользуемых литиевых аккумуляторов, появляющихся при замене мобильных телефонов на смартфоны.

При эксплуатации аккумуляторов в телефонах со своим зарядным устройством, благодаря использованию специализированных микросхем для контроля заряда, проблем с зарядом практически не возникает. Но при использовании литиевых аккумуляторов в различных самоделках возникает вопрос, как и чем заряжать такие аккумуляторы. Некоторые считают, что литиевые аккумуляторы уже содержат встроенные контроллеры заряда, но на самом деле в них встроены схемы защиты, такие аккумуляторы называют защищёнными. Схемы защиты в них предназначены в основном для защиты от глубокого разряда и превышения напряжения при зарядке выше 4,25В, т.е. это аварийная защита, а не контроллер заряда.

Некоторые «самодельщики» на сайте тут - же напишут, что за небольшие деньги можно заказать специальную плату из Китая, с помощью которой можно зарядить литиевые аккумуляторы. Но это только для любителей «шопинга». Нет смысла покупать то, что легко собирается за несколько минут из дешевых и распространенных деталей. Не нужно забывать и о том, что заказанную плату придется ждать около месяца. Да и покупное устройство не приносит такого удовлетворения, как сделанное своими руками .

Предлагаемое зарядное устройство способен повторить практически каждый. Данная схема весьма примитивна, но полностью справляется со своей задачей. Все что требуется для качественной зарядки Li-Ion аккумуляторов, это стабилизировать выходное напряжение зарядного устройства и ограничить ток заряда.

Зарядное устройство отличается надежностью, компактностью и высокой стабильностью выходного напряжения, а, как известно, для литий-ионных аккумуляторов это является очень важной характеристикой при зарядке.

Схема зарядного устройства для li-ion аккумулятора

Схема зарядного устройства выполнена на регулируемом стабилизаторе напряжения TL431 и биполярном NPN транзисторе средней мощности. Схема позволяет ограничить зарядный ток аккумулятора и стабилизирует выходное напряжение.

В роли регулирующего элемента выступает транзистор Т1. Резистор R2 ограничивает ток заряда, значение которого зависит лишь от параметров аккумулятора. Рекомендуется использовать резистор мощностью 1 вт. Другие резисторы могут иметь мощность 125 или 250 мВт.

Выбор транзистора определяется необходимым зарядным током установленным для зарядки аккумулятора. Для рассматриваемого случая, зарядки аккумуляторов от мобильных телефонов, можно применить отечественные или импортные NPN транзисторы средней мощности (например, КТ815, КТ817, КТ819). При высоком входном напряжении или использовании транзистора малой мощности, необходимо транзистор установить на радиатор.

Светодиод LED1 (выделен красным цветом в схеме), служит для визуальной сигнализации заряда аккумулятора. При включении разряженного аккумулятора, индикатор светится ярко и по мере заряда тускнеет. Свечение индикатора пропорционально току заряда аккумулятора. Но следует учесть, что при полном затухании светодиода, батарея все еще будет заряжаться током менее 50ма, что требует периодического контроля над устройством для исключения перезаряда.

Для повышения точности контроля окончания заряда, в схему зарядного устройства добавлен дополнительный вариант индикации заряда аккумулятора (выделен зеленым цветом) на светодиоде LED2, маломощном PNP транзисторе КТ361 и датчике тока R5. В устройстве возможно использование любого варианта индикатора в зависимости от требуемой точности контроля заряда аккумулятора.

Представленная схема предназначается для заряда только одного Li-ion аккумулятора. Но это зарядное устройство можно использовать и для заряда других видов аккумуляторов. Требуется лишь выставить необходимое для этого значение выходного напряжения и ток зарядки.

Изготовление зарядного устройства

1. Приобретаем или подбираем из имеющихся в наличии, комплектующие для сборки в соответствии со схемой.

2. Сборка схемы.
Для проверки работоспособности схемы и ее настройки, собираем зарядное устройство на монтажной плате.

Диод в цепи питания аккумулятора (минусовая шина – синий провод) предназначен для предотвращения разряда литий-ионного аккумулятора при отсутствии напряжения на входе зарядного устройства.

3. Настройка выходного напряжения схемы.
Подключаем схему к источнику питания напряжением 5…9 вольт. Подстроечным сопротивлением R3 устанавливаем выходное напряжение зарядного устройства в пределах 4,18 – 4,20 вольта (при необходимости, в конце настройки измеряем его сопротивление и ставим резистор с нужным сопротивлением).

4. Настройка зарядного тока схемы.
Подключив к схеме разряженный аккумулятор (о чем сообщит включившийся светодиод), резистором R2 устанавливаем по тестеру величину зарядного тока (100…300 ма). При сопротивлении R2 менее 3 ом светодиод может не светится.

5. Готовим плату для монтажа и пайки деталей.
Вырезаем необходимый размер из универсальной платы, аккуратно обрабатываем края платы напильником, очищаем и лудим контактные дорожки.

6. Монтаж отлаженной схемы на рабочую плату
Переносим детали с монтажной платы на рабочую, паяем детали, выполняем недостающую разводку соединений тонким монтажным проводом. По окончании сборки основательно проверяем монтаж.

Простое и надежное зарядное устройство для литий-ионных или полимерных батарей на основе микросхемы MCP73831 фирмы Microchip . Микросхема обеспечивает регулируемый зарядный ток в диапазоне от 15 мА до 500 мА для одной ячейки li-po аккумулятора. Для работы ЗУ необходимо постоянное напряжение в интервале от 5 до 6В. Его будем снимать с USB-порта персонального компьютера.

Зарядный ток литиевого аккумулятора может настраиваться с помощью внешних сопротивлений R2 и R4. При подключение резистора R4 (2кОм) через перемычку R5 к общему проводу будет установлен зарядный ток 500 мА. При подключении к общему проводу R2 (10кОм) зарядный ток будет 100 мА.

Светодиодный индикатор показывает состояние, когда li-ion батарея полностью заряжена. Максимальное зарядное напряжение обычно выбирают 4,2 В - это стандарт для большинства существующих литиевых аккумуляторов. Всего три сопротивления, конденсатор, индикаторный светодиод - и зарядное устройство полностью готово.

Зарядный ток изменяется от 15mA ~ 500mA по хитрой логике микросхемы. Подключите аккумулятор и сразу кратковременно загорится светодиод, а постоянно он будет гореть когда батарея будет полностью заряжена.

Технические параметры

Напряжение питания – 5В (USB)
Зарядный ток – 100 мА или 500 мА

Все детали проекта открыты для свободного использования. Проект созданный в KiCAD можно скачать в приложении.

Для своих последних проектов я использовал Li-Pol аккумуляторы от сотовых телефонов. Они действительно замечательны. Высокая энергетическая плотность, низкий уровень саморазряда, нет эффекта памяти. Но Li-Pol аккумуляторы, в отличие от других, требуют более сложных зарядных устройств. Вы должны не допустить превышения зарядного напряжения и перезаряда - это может повредить аккумулятор.

В течение некоторого времени я использовал зарядное устройство Sparkfun LiPoly charger на базе MAX1555 , и работало оно действительно хорошо. Единственное что не получалось - управлять током заряда. После проведения нескольких опытов я решил попробовать другой чип - MCP73833 .

Характерные особенности MC73833
(скопировано со спецификации):

  • Высокая точность установки выходного напряжения
  • Опции управления выходным напряжением
  • Программируемый пользователем выходной ток до 1 А
  • Два статусных выхода с открытым стоком
  • Опции предзаряда и завершения заряда
  • Защита от превышения напряжения
  • Выход «заряд завершен»

Мне понравились возможности чипа по установке тока зарядки и статусные выходы, которые в серьезных устройствах исключительно полезны.

Схема


Резистором R4 устанавливается ток заряда. Я установил этот резистор в контакты от разъема, чтобы удобнее было менять ток для заряда аккумуляторов других типов. При сопротивлении резистора 10 кОм ток заряда аккумулятора равен 100 мА.

Результат

Все использованные компоненты - 0805 SMD, кроме чипа MCP73833, который имеет корпус MSOP-10. Это было моей первой попыткой изготовить устройство с применением SMD компонентов. Я использовал паяльную станцию. Оказалось, что требуется очень точная дозировка паяльной пасты. Лишний припой необходимо удалять специальной оплеткой для снятия припоя.

Выводы

Следующая версия должна иметь гнездо для подключения сетевого адаптера. Два штырька неудобны для подключения источника питания.

Замечание: как видите, на плате есть разъем мини-USB, чтобы иметь возможность для подключения зарядного устройства к ноутбуку.

Я настоятельно рекомендую использовать что-типа USB хаба для проверки любого собранного вами USB устройства.
Я не сделал этого, и теперь имею сгоревший первый макет зарядного устройства и единственный уцелевший USB порт в ноутбуке. И хотя ОС предупреждала меня «Большой ток потребления, порт будет отключен», было уже поздно. Короче, вы предупреждены.

Микросхемы импортные / MICROCHIP 1A Li-Ion/Li-Poly Charge mgmt controller, PG output MSOP10

Поставщик Производитель Наименование Цена
Триема MCP73833-CNI/MF 1 руб.
Стандарт СИЗ Microchip MCP73833T-FCI/UN 20 руб.
Десси Microchip MCP73833T-FCI/UN 72 руб.
LifeElectronics Microchip MCP73833T-FCI/MF по запросу
  • ВЕСЬМА, ВЕСЬМА ПОЛЕЗНАЯ СТАТЬЯ АВТОМАТИЧЕСКАЯ ЗАРЯДКА АККУМУЛЯТОРОВ АКТУАЛЬНА.
  • Мне тоже понравилось, весьма актуально, а главное есть практическая ценность.
  • Как дополнительна информация по аккумуляторам. http://www.compitech.ru/html.cgi/arh...9/stat_116.htm
  • Верно подмечено - именно практическая ценность. И добавка от lllll весьма...
  • Подскажите где 2 часть, Li Ion аккумуляторы для роб. техники?
  • Если имеется в виду статья Литий-ионные аккумуляторы для робототехники. Часть 1. Введение то, во первых, этот вопрос надо было задавать не в этой теме, а в комметнариях имено той статьи во вторых, посмотрите на дату выхода статьи - вчера, 23 июня. Далее смотрим самый низ статьи - Продолжение следует По моему - все логично. Или все не очевидно? Ну дайте переводчикам и редакторам хоть какое то время для подготовки продолжения.
  • Микросхема хорошая, а вот как ее автор статьи использовал мне не понравилось, не мудрено что он порт в ноуте спалил. Приглядитесь к части схемы разъема миниUSB.
  • Подскажите, как изменить схему чтобы обезопасить ЮСБ-порт при зарядке от него? Но можно было питать зарядное и от сетевого адаптера.
  • поставь резистор соответствующий, 3-5кОм, брать будет около 350-200мА от порта, 1кОм потянет 1А току. собрал схему по даташиту и теперь есть два вопроса, которые никак не пойму: почему микросхема заряжает только до 4.10-4.13в? и как подключить лампочку, чтобы она отключалась, когда достигнуто минимальное для аккумулятора напряжение?

Так как число заходов на страницы сайта по запросу «схема зарядки li-ion аккумулятора» существенно возросло. Можно даже сказать этих запросов большинство за день. Поэтому дабы удовлетворить информационный спрос, посвятим этой теме отдельную рубрику.

Для начала представляю вам простейшую схему зарядки для 3,7 вольтовых, литий ионных аккумуляторов. Питание 5 вольт, в данной схеме осуществляется от USB компьютера, Адаптера постоянного тока на 5 вольт (например зарядное от мобильного телефона) или маломощной солнечной батареи. Мощность зарядного устройтва предполагается около 1 ампера.

Мозгом и сердцем схемы служит микрочип MCP73831. Весьма легко достать или приобрести в радио магазине. Средняя цена около 1,5 — 2 американских вечнозелёных. Можно заказать у китайцев по ссылке всего за $3.88 за 10 шт. MCP73831 является одним из не дорогих микрочипов в линейке контролёров управления заряда для использования на ограниченном пространстве на плате. Даташит на MCP73831 можно посмотреть по . Эта микросхема использует постоянный ток / постоянный алгоритм заряда. А так же прекращает зарядку при полностью заряженном аккумуляторе.

Приведу общую схему:

Стали популярными в портативной электронике, потому что они могут похвастаться самой высокой плотностью энергии среди любой батареи, используемой в коммерческих целях. Преимущества включают в себя тысячи перезарядок и не возникновение « », в отличии от аккумуляторов. Тем не менее, Литий-ионные аккумуляторы должны заряжаться при тщательном контроле постоянного тока и постоянного напряжения. Переизбыток заряда и неосторожное обращение с литий-ионными элементами может привести к повреждению или нестабильной работе батареи.

Итак, как уже говорилось, ток заряда должен быть около 1 ампера. Подаваемое напряжение не должно превышать 5 вольт. Предполагаемые размеры платы зарядного устройства, не велики, около 25 х 19 х 10 мм.

Все необходимые элементы показаны на схеме. В качестве приемника 5 вольт служит гнездо под мини USB, но ваша фантазия не ограничена. Можно хоть напрямую впаять провода от адаптера 5 v.

  • Амперметр может быть подключен, только ко входу +5 v.
  • Ели входное напряжение, всё же будет незначительно больше, то ток заряда соответственно тоже будет больше. Но это ничего страшного, так как микрочип MCP73831 отсечет излишнее напряжение на выходе.
  • Так же микросхема прекратит зарядку при достижении аккумулятором напряжения в 3,7 v.
  • Лучше всего, чтобы зарядный ток составлял 35 — 37 % от ёмкости заряжаемого аккумулятора. Тоесть если АКБ на 1000 мА, то ток заряда должен быть около 400 мА.

Готовые платки под пайку:

Вот так выглядит готовая плата зарядного устройства литий ионных аккумуляторов.

Напомню, размеры должны получиться около 25 х 19 х 10 мм.

Хотя схема крайне проста в разработке и сборке и собрать её не составит особого труда, считаю за необходимое вас уведомить, что данную схему вы можете приобрести по цене не более $2, как вы уже догадались, у китайцев.

Крепить же саму банку аккумулятора можно, например, с помощью неодимовых магнитов, а так же смотрите другие варианты крепления контактов для баночных аккумуляторов

На этом всё, скоро покажу другие и схемы балансирующих зарядный устройств.


Прогресс идет вперед, и на смену традиционно используемым NiCd (никель-кадмиевым) и NiMh (никель-металлогидридным) всё чаще приходят литиевые аккумуляторы.
При сравнимом весе одного элемента, литий имеет большую ёмкость, кроме того, напряжение элемента у них в три раза выше - 3,6 V на элемент, вместо 1,2 V.
Стоимость литиевых аккумуляторов стала приближаться к обычным щелочным батареям, вес и размер намного меньше, да к тому же их можно и нужно заряжать. Производитель говорит, 300-600 циклов выдерживают.
Размеры есть разные и подобрать нужный не составляет труда.
Саморазряд настолько низкий, что лежат годами и остаются заряженными, т.е. устройство остается рабочим когда оно нужно.

«С» значит Capacity

Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).
Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 × емкость аккумулятора)/h или (0.1 × емкость аккумулятора)/h соответственно.
Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 × 720mAh/h = 360 мА, это относится и к разряду.

А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.

Схема простого зарядного устройства на LM317


Рис. 5.


Схема с применением обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.

Надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.

Схема простого зарядного устройства на LTC4054


Рис. 6.


Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).


Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»

Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120°).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.

Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле

I=1000/R,
где I - ток заряда в Амперах, R - сопротивление резистора в Омах.

Индикатор разрядки литиевого аккумулятора

Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.


Рис. 8.


Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.

Нюанс долговечности

Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более.

Эксплуатация и меры предосторожности

Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.
1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.

Невыполнение первых трех пунктов приводит к пожару, остальных - к полной или частичной потере ёмкости.

Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и аккумулятор начинает работать меньше по времени при больших токах потребления - создаётся впечатление, что ёмкость упала.
По этому я обычно ставлю ёмкость побольше, какую позволяют габариты устройства, и даже старые банки, которым лет по десять, работают вполне прилично.

Для не очень больших токов подходят старые аккумуляторы от сотовых.


Из старой ноутбучной батареи можно вытащить много вполне рабочих аккумуляторов формата 18650.

Где я применяю литиевые батареи

Давно переделал шуруповерт и электроотвертку на литий. Пользуюсь этими инструментами нерегулярно. Теперь даже через год неиспользования они работают без подзарядки!

Маленькие батареи ставлю в детские игрушки, часы и т.д., где с завода стояли 2-3 «таблеточных» элемента. Там где нужно ровно 3V добавляю один диод последовательно и получается как раз.

Ставлю в светодиодные фонарики.

В тестер вместо дорогой и малоёмкой «Кроны 9V» установил 2 банки и забыл все проблемы и лишние затраты.

Вообще ставлю везде, где получается, вместо батареек.

Где я покупаю литий и полезности по теме

Продаются . По этой же ссылке найдёте модули зарядок и пр. полезности для самодельщиков.

На счёт ёмкости китайцы обычно врут и она меньше написанной.


Честные Sanyo 18650

  • Разделы сайта