Зарядное устройство для свинцовых аккумуляторов. Автоматическое зарядное устройство для свинцово-кислотных аккумуляторных батарей

Предлагаем идею изготовления зарядного устройства для любых свинцово-кислотных аккумуляторов от мотоциклов или авто, при минимальных затратах сил. Создано оно на основе импульсного блока питания 14 В / 5 A. Можно использовать практически любой готовый импульсный источник питания с выходным напряжением 12 — 15 В, который подвергнется небольшой доработке. Кстати, похожий фокус можно провернуть и из компьютерного БП —


Импульсный блок питания на 14 вольт

Особенности зарядного устройства

  • напряжение предельное 14.2 V
  • минимальное выходное напряжение (АКБ разряжен) 6 V
  • ток зарядки переключается 0.8 A / 3.5 A

Дополнительно понадобятся LED индикаторы: зеленый и красный, NPN транзистор. Красный светодиод указывает на зарядку аккумулятора, а зеленый на достижение предельного напряжения (зарядка завершена).

Предупреждаем: в сетевом адаптере присутствуют напряжения, опасные для жизни и здоровья. За подобную доработку следует браться только опытным электронщикам, которые имеют опыт работы с импульсными блоками питания!

Модификация касается только элементов на вторичной стороне трансформатора.
Идея основана на коррекции (при необходимости) выходного напряжения блока питания, добавления ограничителя тока и светодиодов, информирующих о режиме работы зарядного устройства.

Схема доработки


Оригинал схемы ИБП
Схема доработки

Последовательность доработки ИБП

1) Выбор выходного напряжения.

Адаптеры питания часто для стабилизации выходного напряжения, используют TL431. Выходное напряжение задает делитель R1 и R2, где напряжение на R2 всегда равно 2.5 В. выходное напряжение (в режиме стабилизации напряжения, аккумулятор заряжен) составляет 2.5 В х (1 + R1 / R2). Для получения напряжения 14.2 В, если блок питания дает 12 В, нужно увеличить R1 или уменьшить R2. Данный блок питания выдает 14.1 В, поэтому решено не изменять данные делителя.

2) Добавление светодиода зеленого цвета и резистора R4 параллельно оптрону.

В режиме стабилизации напряжения, TL431 управляет током светодиода оптрона, чтобы таким образом получить стабилизацию. Если напряжение на выходе слишком низкое — TL431 закрывается и через оптрон ток не течет. Поставив зеленый светодиод, получаем информацию о достижении режима стабилизации напряжения, то есть заряда аккумулятора. Во время нормальной работы ток оптрона составляет всего около 0.5 мА, то есть зеленый диод горит слабо. Чтобы его свечение было ярче, параллельно оптрону присоединяем резистор R4 номиналом 220 Ом. Он увеличивает ток зеленого диода примерно до 5 мА.

3) Добавление петли гистерезиса ограничения тока

Обычно, за ограничение тока отвечает микросхема, управляющая работой преобразователя. Если на выходе есть сильная перегрузка, например при коротком замыкании — контроллер не в состоянии самостоятельно запустить БП. В системе зарядки аккумулятора надо сделать так, чтобы этот режим ограничения тока стал нормальным режимом. С этой целью добавим элементы: R5 (резистор мощности), R6 (около 1 кОм, защита базы транзистора при коротком замыкании выхода), транзистор T1 и красный светодиод. Значение ограничения тока равна ~ 0.65 В / R5. Резистор R5 по умолчанию 0.82 Ом (0.8 А), который включается параллельно с переключателем, резистором 0.22 Ом / 5 В (тогда ток будет 3.5 А). Резисторы довольно сильно греются — что является самым большим недостатком принятого решения. Вместо ограничения с одиночным транзистором, можно использовать операционного усилителя или токовое зеркало.

Можно ли применить БП от ноутбука?

К сожалению, для переделки не подходят блоки питания от ноутбуков, дающие 19.5 В на выходе. Это связано с тем, что напряжение производится с помощью вспомогательной обмотки и самоподдерживающейся работой устройства. Если понизим напряжение с 19.5 до 14.2 В — это также уменьшит вспомогательные напряжение питания чипа контроллера преобразователя. При 14.2 на выходе система будет работать хорошо, но снижение напряжения ниже 12 В (при разряженном аккумуляторе), преобразователь не будет в состоянии стартануть. С этим же БП старт проходит даже от 6 В — то есть имеется большой запас.


Переделанный БП в ЗУ

Возможные улучшения

Как известно, герметичные свинцово-кислотные аккумуляторы могут быть постоянно подключенными к зарядному устройству, то есть быть в режиме подзарядки. Чтобы знать, когда аккумулятор полностью заряжен, зарядное устройство должно быть оснащено каким-либо индикатором. Ниже описывается один из вариантов зарядного устройства снабженного индикатором заряда.

Описание зарядного устройства для свинцово-кислотных аккумуляторов

Напряжение на схему зарядного устройства подается на клеммы Х1 и Х2 от внешнего источника постоянного напряжения (12…20 вольт). Зарядный ток поступает на индикатор включения зарядного тока (светодиод HL1), транзистор VТ1 и напряжения зарядки . Стабилизированное зарядное напряжение подключается к клеммам Х3 и Х4, которые подключаются к свинцово-кислотному аккумулятору.

Индикатор тока зарядки включает в себя датчик тока (резистора R1), ток зарядки протекающий через него создает падение напряжения на нем. Из-за падения напряжения открывается транзистор VТ1, в коллектор которого подключен индикатор – светодиод HL1.

Величина падения напряжения, при котором открывается транзистор VT1, устанавливается резистивным делителем на сопротивлениях R3 и R4. Если ток зарядки меньше установленного уровня тока (ограничение тока устанавливается подстроечным резистором R4), светодиод HL1 не светится. С увеличением зарядного тока, свечение светодиода также плавно увеличивается.

В качестве стабилизатора напряжения зарядки используется стабилизатор регулируемым выходным напряжением LM317. В соответствии с используемым уровнем напряжения и зарядного тока стабилизатор LM317должн быть установлен на хороший теплоотвод.

Подстроечный резистор R5 регулирует выходное напряжение на клеммах Х3 и Х4. Для батарей с номинальным напряжением 6 В выходное напряжение заряда должно составлять 6,8…6,9 В, для аккумуляторов с номинальным напряжением 12 В это выходное напряжение будет уже 13,6…13,8 В.

Необходимо отметить, что входное напряжение от внешнего источника постоянного напряжения должно быть больше напряжения на выходе зарядника примерно на 5 вольт (падение напряжения на R6 и LM317).

ЗАРЯДНОЕ УСТРОЙСТВО

ДЛЯ КИСЛОТНО - СВИНЦОВЫХНЕОБСЛУЖИВАЕМЫХ SLA АККУМУЛЯТОРОВ ЁМКОСТЬЮ 4 ... 17 А/час

Необслуживаемые кислотно-свинцовые аккумуляторы в настоящее время очень широко используются в различных источниках бесперебойного питания компьютерной техники, системах охранной сигнализации, источниках питания электроинструмента и даже в детских игрушках. Достоинством их является простота эксплуатации, отсутствие жидкого электролита и, соответственно, нет нужды следить за его уровнем и плотностью. Для сокращения времени на восстановление электрической ёмкости зарядку этих аккумуляторов обычно производят большим током (режим быстрой зарядки), численно достигающим номинальной ёмкости. Из-за отсутствия возможности произвести доливку выкипевшего электролита при его перезарядке, требования к зарядному току этих аккумуляторов очень жёсткие - фирмы производители аккумуляторов требуют, чтобы пульсации зарядного тока не превышали 2,5% от максимального тока, а зарядный ток изменялся во времени строго определённым образом. Эти условия практически всегда выполняются в источниках бесперебойного питания, содержащих сложные импульсные блоки питания. Этим же требованиям удовлетворяют ранее описанные в этом разделе импульсные зарядные устройства с ключевыми транзисторами и накопительным дросселем. Рассмотренные схемы достаточно сложны для повторения, а в быту часто требуются простейшие малогабаритные зарядные устройства, не самые оптимальные с точки обеспечения выработки максимального ресурса аккумуляторов, но зато имеющие небольшие габариты и высокий КПД. Ниже приводится схема такого устройства. Зарядный ток аккумулятора поддерживается стабильным на уровне 10% от численного значения номинальной ёмкости, что уменьшает отрицательное действие импульсного характера этого тока, а прекращение зарядки происходит при достижении напряжения на клеммах аккумулятора примерно 15В.

Требуемое значение зарядного тока достигается подбором сопротивления резистора R8 . Значения пороговых напряжений отключения процесса зарядки определяются соотношением резисторов R12/R6 и R12/R6||R2 . При расчёте номиналов резисторов исходят из того, что при достижении максимального напряжения на аккумуляторе напряжение на выводе 16 микросхемы DA1 должно составлять 5,00В. В процессе зарядки яркость свечения светодиода HL1 изменяется, а при полной зарядке светодиод начинает мигать, привлекая внимание.

Схема является модификацией ранее описанного устройства. В качестве регулирующего элемента используется тиристор, что позволяет упростить схему, исключив конденсаторы большой ёмкости и дроссели. Все элементы устройства, кроме силового трансформатора располагаются на небольшой печатной плате 45 х 45 мм.

КПД устройства очень высок и элементы схемы, включая тиристор, не требуют для охлаждения радиатор.

Предлагаемое устройство можно использовать и для зарядки иных типов аккумуляторов, скорректировав зарядный ток и пороговое напряжение отключения. Заменив силовые диоды и трансформатор на более мощные и установив тиристор на небольшой радиатор схему можно использовать и для зарядки автомобильных аккумуляторов. Сопротивление резистора R8 при этом уменьшают в 5 -10 раз. При отсутствии ошибок в монтаже и исправности элементов схема начинает работать сразу. Необходимо лишь скорректировать зарядный ток и пороговое напряжение.

В радиолюбительской практике зачастую сталкиваешься с проблемой питания переносных устройств. Благо всё давно за нас уже придумано и создано, остается лишь воспользоваться подходящим аккумулятором, к примеру герметичными свинцово-кислотными АКБ которые получили оргомную популярность и при этом вполне доступны по деньгам.

Но тут появляется еще одна проблема, как их заряжать? С этой проблемой столкнулся и я, но поскольку и этот вопрос уже давно решен, хочу поделится своей конструкцией зарядного устройства.

В поисках подходящей схемы наткнулся на статью С.Малахова с двумя вариантами универсальных зарядных устройств, одна на паре КР142ЕН22, а вторая на одной микросхеме L200C, её и решил повторить. Почему именно на L200C ? Да плюсов полно: в целях экономии места, печатной платы, проще разводить плату, нужен только один радиатор, есть защита от перегрева, от переполюсовки, от короткого замыкания, да и по стоимости выходит дешевле двух КР142ЕН22.

В схему изменений практически не вносил, тут всё просто и вполне работоспособно, спасибо автору.

Состоит из регулируемого контроллера напряжения и тока выполненного в корпусе TO-220-5 (Pentawatt), выпрямителя и набора резисторов в токозадающей цепи.

В качестве трансформатора сначала применил накальный ТН36-127/220-50, но учитывая его недостаточный выходной ток в 1,2А позже заменил на ТН46-127/220-50 с выходным током 2,3А.

Эти трансформаторы удобны набором обмоток в 6,3В, комбинируя которые можно получить необходимое напряжение. Причем у третьей и четвертой вторичной обмотки есть отвод 5В (12 и 15 выводы). Автор рекомендует для режима заряда 6 вольтовых АКБ подключать обмотку на 12 В, а для режима заряда 12 вольтовых аккумуляторов еще одну дополнительно на 8 В. В таком режиме падение напряжения будет примерно равно 5 - 6 Вольтам. Я решил это падение немного уменьшить и подключил для шестивольтового режима обмотки на 10в, а для двенадцатвольтового дополнительную на 6,3в тем самым уменьшив падение напряжения до 2-3 Вольт. Меньшее падение напряжения облегчает тепловой режим, но при этом нельзя это падение делать слишком маленьким, надо учитывать падение напряжения на микросхеме. Если вдруг зарядное устройство будет работать нестабильно, можно переключить обмотки и подать большее напряжение.

Зарядное устройство для свинцово-кислотных аккумуляторов в авторском варианте оснащается амперметром и вольтметром, но, раз мы живем в эпоху современных технологий я решил поставить современную панель с ампервольтметром. Такие панели можно приобрести в радиомагазинах, я заказал у наших китайских братьев всего за 5 американских рублей. Панель позволяет измерять ток от 0,01 до 9,99 Ампер и напряжение от 0,1 до 99,9 Вольт, выполнен на микроконтроллере STM8, правда требует дополнительного питания, которое я взял прямо с выхода диодного моста. Следует принять во внимание, что замер тока производится по минусовой шине.

Переключение зарядного тока в авторском варианте выполняется галетным переключателем, но подобные переключатели достаточно дороги и труднодоступны, поэтому я решил применить дешевые кнопочные переключатели PS22F11, что удешевило конструкцию и дало одно преимущество, кнопками можно комбиниривать токоограничительные резисторы подбирая оптимальный ток заряда. При всех отключенных переключателях ток заряда составляет 0,15А.

Печатную плату сделал малогабаритную, под ЛУТ, все элементы зарядного устройства расположены плотно, но в принципе, можете переделать под свой вкус.

Радиатор охлаждения автор рекомендует ставить с размерами 90х60мм, мне же под руку попался радиатор от компьютерного кулера, с размерами 60х80мм и очень развитыми ребрами. Микросхему к радатору закрепил с помощью пластикового изолятора через теплопроводную диэлектрическую подложку.

В принципе, все нюансы и отличия моего и авторского варианта я описал, переходим к корпусу.

Поискав по полочкам и запасам подходящего корпуса для Зарядного устройство для свинцово-кислотных аккумуляторов я не нашел, а в этом случае радиолюбители поступают просто, берут корпус от АТХ блока питания компьютера. Достать их легко, в неработающем виде можно найти за копейки, корпус удобный, крепкий, есть разъем питания.

Подобрал блок питания с сплошной боковой стенкой, выпотрошил все содержимое оставив только разъем и выключатель питания. Разложил внутри все элементы конструкцию, разметил и просверлил отверстия и выпилил окошко для индикаторной панели.

Затем остается все собрать и подключить. Для соединения использовал провода от того же компьютерного блока питания.

Из явных минусов использования такого корпуса.

Трансформатор оказался великоват и верхняя крышка не закрылась плотно, хотя её все таки можно притянуть шурупом, хоть и с деформацией.
- поскольку корпус железный, на него передается вибрация от трансформатора, что вызывает лишний гул.
- дырка на корпусе откуда выходила коса проводов.

Для придания привлекательного внешнего вида решено распечатать на плотной бумаге фальшпанель с надписями для кнопок и т.п.

Настройка сводится к регулировке выходного напряжения для обоих режимов подстроечными резисторами, собственно всё как в авторском варианте, я выставил для 6в АКБ напряжение заряда в 7,2 Вольт, а для 12в АКБ в 14,5 Вольт.

Подключив вместо аккумулятора резистор 4,7 Ом и мощностью 5-10 Вт контролируем зарядный ток, в случае необходимости подбираем резисторы. При сборке платы рекомендую напаять на все дорожки припоя, для увеличения их площади сечения и уменьшения сопротивления, если Вы будете разводить свою плату, делайте эти дорожке как можно толще, чтобы свести к минимуму их сопротивление. Нет ничего страшного если у Вас ток заряда получился больше расчетного, аккумуляторы можно заряжать током большим чем 0,1 от номинальной емкости (0,1С), смело до 0,2 от номинала (0,2С).

После сборки и настройки Зарядное устройство для свинцово-кислотных аккумуляторов готово к работе и способно заряжать практически все типы свинцово кислотных АКБ напряжением 6 или 12 Вольт и с рабочим током от 1,2 до 15 Ампер.

По окончании заряда ток подаваемый на АКБ равен току саморазряда, аккумулятор в таком режиме может находиться очень долго и при этом сохранять и поддерживать свой заряд.

Рассказать в:

Необходимость зарядного устройства для свинцово -кислотных аккумуляторных батарей возникла давно. Первое зарядное было сделано еще для автомобильного аккумулятора на 55А.Ч. Со временем в хозяйстве появились необслуживаемые гелиевые батареи различных номиналов, тоже нуждающиеся в зарядке. Городить для каждой батареи отдельное зарядное устройство, по крайней мере, неразумно. Поэтому пришлось взять в руки карандаш, проштудировать доступную литературу, в основном журнал "Радио", и совместно с товарищами родить концепцию универсального автоматического зарядного устройства (УАЗУ) для 12-ти вольтовых аккумуляторов от 7АЧ до 60АЧ. Получившуюся конструкцию выношу на ваш суд. Сделано в железе более 10 шт. с различными вариациями. Все устройства работают без нареканий. Схема легко повторяется с минимальными настройками.
За основу сразу был взят блок питания от старого ПК формата АТ, поскольку обладает целым комплексом положительных качеств: малые размеры и вес, хорошая стабилизация, мощность с большим запасом, ну и самое главное уже готовая силовая часть, к которой осталось прикрутить блок управления. Идею БУ подсказал С. Голов в своей статье "Автоматическое зарядное устройство для свинцово-кислотной аккумуляторной батареи", журнал "Радио" №12 2004г., спасибо ему отдельное.
Коротко повторю алгоритм зарядки батареи. Весь процесс состоит из трех этапов. На первом этапе, когда батарея полностью или частично разряжена, допустимо проводить зарядку большим током, достигающим 0,1:.0,2С, где С - емкость аккумулятора в ампер-часах. Зарядный ток должен быть ограничен сверху указанным значением или стабилизирован. По мере накопления заряда растет напряжение на клеммах батареи. Это напряжение контролируем. По достижению уровня 14,4 - 14,6 вольта первый этап завершен. На втором этапе необходимо поддерживать постоянным достигнутое напряжение и контролировать зарядный ток, который будет снижаться. Когда ток заряда упадет до 0,02С, батарея наберет заряд не менее 80%, переходим к третьему этапу заключительному. Уменьшаем напряжение заряда до 13,8 в. и поддерживаем его на этом уровне. Ток заряда постепенно снизится до 0,002:.0,001С и стабилизируется на этом значении. Такой ток для батареи не опасен, в этом режиме батарея может находиться долго, без вреда для себя и всегда готова к применению.
Теперь собственно поговорим о том как это все сделано. БП от компьютера был выбран из соображения наибольшего распространения схемного решения, т.е. узел управления выполнен на микросхеме TL494 и ее аналогах (MB3759, КА7500, КР1114ЕУ4) и слегка переделан:

Демонтированы схемы выходных напряжений 5в, -5в, -12в, отпаяны резисторы обратной связи по 5 и 12в, отключена схема защиты от перенапряжения. На фрагменте схемы отмечено крестиком места разрыва цепей. Оставлена только выходная часть 12в, можно еще заменить диодную сборку в цепи 12в на сборку снятую с 5-ти вольтовой цепи, она помощней, хотя не обязательно. Убраны все лишние провода, оставили только по 4 провода черного и желтого цвета длинной сантиметров по10, выход силовой части. К 1-й ноге микросхемы припаиваем проводок длинной 10 см это будет управление. На этом доработка закончена.
В блоке управления дополнительно, по просьбам многочисленных желающих иметь такую штуку, реализован режим тренировки и схема защиты от переполюсовки батареи для особо невнимательных. И так БУ:

Основные узлы: параметрический стабилизатор опорного напряжения 14,6в VD6-VD11, R21
Блок компараторов и индикаторов, реализующих три этапа зарядки батареи DA1.2, VD2 первый этап, DA1.3, VD5 второй, DA1.4, VD3 третий.
Стабилизатор VD1, R1, C1 и делители R4, R8, R5, R9, R6, R7 формирующие опорное напряжение компараторов. Переключатель SA1 и резисторы обеспечивают изменение режима зарядки для различных аккумуляторов.
Блок тренировки DD К561ЛЕ5, VT3, VT4, VT5, VT1, DA1.1.
Защита VS1, DA5, VD13.

Как это работает. Предположим что мы заряжаем автомобильный аккумулятор 55АЧ. Компараторы отслеживают падение напряжения на резисторе R31. На первом этапе схема работает как стабилизатор тока, при включении ток заряда будет около 5А, горят все 3 светодиода. DA1.2 будет держать ток заряда пока напряжение на батарее не достигнет 14,6в., DA1.2 закроется, погаснет VD2 красный. Начался второй этап.
На этом этапе напряжение 14,6в на батарее поддерживается стабилизаторомVD6-VD11, R21, т.е. ЗУ работает в режиме стабилизации напряжения. По мере увеличения заряда батареи, ток падает и как только он опустится до 0,02С, сработает DA1.3. Погаснет желтый VD5 и откроется транзистор VT2. Шунтируются VD6, VD7, напряжение стабилизации скачком снижается до 13,8 в. Перешли к третьему этапу.
Дальше идет дозаряд батареи очень маленьким током. Поскольку к этому моменту батарея набрала примерно 95-97% заряда, ток снижается постепенно до 0,002С и стабилизируется. На хороших батареях может снизится до 0,001С. На этот порог и настроен DA1.4. Светодиод VD3 может погаснуть, хотя на практике он продолжает слабо светить. На этом процесс можно считать завершенным и использовать аккумулятор по назначению.

Режим тренировка. При длительном хранении аккумулятора, его периодически рекомендуется тренировать, так как это может продлить жизнь старых батарей. Поскольку аккумулятор штука весьма инерционная, заряд-разряд должны длиться по несколько секунд. В литературе встречаются устройства которые тренируют батареи с частотой 50ГЦ, что печально сказывается на ее здоровье. Ток разряда составляет примерно десятую часть тока заряда. На схеме переключатель SA2 показан в положении тренировка, SA2.1 разомкнут SA2.2 замкнут. Включена схема разряда VT3, VT4, VT5, R24, SA2.2, R31 и взведен триггер DA1.1, VT1. На элементах DD1.1 и DD1.2 микросхемы К561ЛЕ5 собран мультивибратор. Он выдает меандр с периодом 10-12 секунд. Триггер взведен, элемент DD1.3 открыт, импульсы с мультивибратора открывают и закрывают транзисторы VT4 и VT3. Транзистор VT3 в открытом состоянии шунтирует диоды VD6-VD8 блокируя зарядку. Ток разряда батареи идет через R24, VT4, SA2.2, R31. Батарея 5-6 секунд получает заряд и такое же время разряжается малым током. Этот процесс длится первый и второй этап зарядки, затем срабатывает триггер, закрывается DD1.3, закрываются VT4 и VT3. Третий этап проходит в обычном режиме. В дополнительной индикации режима тренировки нет необходимости, поскольку мигают светодиоды VD2, VD3 и VD5. После первого этапа мигают VD3 и VD5. На третьем этапе VD5 светит не мигая. В режиме тренировки заряд батареи длится почти в 2 раза дольше.

Защита. В первых конструкциях вместо тиристора стоял диод, который защищал ЗУ от обратного тока. Работает очень просто, при правильном включении оптрон открывает тиристор, можно включать зарядку. При неправильном, загорается светодиод VD13, меняй местами клеммы. Между анодом и катодом тиристора нужно припаять неполярный конденсатор 50 мкф 50 вольт или 2 встречно спаянных электролита 100мкф 50в.

Конструкция и детали. ЗУ собрано в корпусе БП от компьютера. БУ изготовлен по лазерно-утюжной технологии. Рисунок печатной платы прилагается в архивном файле, выполнен в SL4. Резисторы МЛТ-025, резистор R31 - кусок медного провода. Измерительную головку РА1 можно и не ставить. Просто валялась и ее приспособили. Поэтому значения R30 и R33 зависят от миллиамперметра. Тиристор КУ202 в пластмассовом исполнении. Собственно исполнение видно на прилагаемых фото. Разъем и кабель для подключения питания монитора использовали для включения батареи. Переключатель выбора тока зарядки малогабаритный на 11 положений, резисторы припаяны к нему. Если ЗУ будет заряжать только автомобильные аккумуляторы переключатель можно не ставить, впаяв просто перемычку. DA1 - LM339. Диоды КД521 или аналогичные. Оптрон PC817 можно поставить другой с транзисторной исполнительной частью. Платка БУ прикручена к алюминиевой пластине толщиной 4 мм. Она служит радиатором для тиристора и КТ829, на ней же в отверстия вставлены светодиоды. Получившийся блок прикручен к передней стенке БП. ЗУ не греется, поэтому вентилятор подключен к БП через стабилизатор КР140ен8б, напряжение ограничено до 9в. Вентилятор вращается помедленней и практически его не слышно.





Регулировка. Первоначально устанавливаем вместо тиристора VS1 мощный диод, не впаивая VD4 и R20, подбираем стабилитроны VD8-VD10 так чтобы напряжение на выходе, без нагрузки, было 14,6вольта. Далее запаиваем VD4 и R20 и подбором R8, R9, R6 выставить пороги срабатывания компараторов. Вместо батареи подключаем проволочный переменный резистор 10 Ом, устанавливаем ток 5 ампер, впаиваем переменный резистор вместо R8, крутим его при напряжении 14,6в должен погаснуть светодиод VD2, мереям введенную часть переменного резистора и впаиваем постоянный. Впаиваем переменный резистор вместо R9, выставив примерно 150 Ом. Включаем ЗУ, увеличиваем ток нагрузки пока не сработает DA1.2, затем начинаем уменьшать ток до значения 0,1 ампера. Затем уменьшаем R9 пока не сработает компаратор DA1,3. Напряжение на нагрузке должно упасть до 13,8в и погаснет желтый светодиод VD5. Снижаем ток до 0,05 ампера, подбором R6 гасим VD3. Но лучше всего наладку проводить на хорошем разряженном аккумуляторе. Впаиваем переменные резисторы, выставляем их чуть больше указанных на схеме, подключаем амперметр и вольтметр к клеммам аккумулятора и делаем это за один раз. Батарею не сильно разряженную используем, тогда будет быстрее и точнее. Практика показала, что регулировка практически не требуется, если точно подобрать R31. Добавочные резисторы подбираются тоже легко: при соответствующем токе нагрузки, падение напряжения на R31 должно составлять 0,5в, 0,4в, 0,3в, 0,2в, 0,15в, 0,1в и 0,07в.
Вот, собственно и все. Да, еще, если дополнительным двухполюсным тумблером, одной половиной закоротить диод VD6, а другой стабилитрон VD9, то получится ЗУ для 6-ти вольтовых гелиевых батарей. Ток заряда надо выбрать наименьший переключателем SA1. На одном из собранных эта операция была успешно осуществлена.

  • Разделы сайта