Что находится на крыле самолета. "Командир, мы падаем!" Почему в последние секунды экипаж говорил о закрылках? Механизмы передней кромки крыла

Когда летишь в самолете пассажиром и сидишь у иллюминатора напротив крыла, это кажется магией. Все эти штучки, которые выдвигаются, поднимаются, опускаются, убираются, а самолет в итоге летит. Но когда начинаешь обучение пилотированию и управляешь самолетом самостоятельно, становится ясно: никакой магии, а чистая физика, логика и здравый смысл.

Все вместе эти штуковины называются «механизация крыла». В буквальном переводе на английский high lift devices. Дословно – приспособления для увеличения подъемной силы. Более точно – для изменения характеристик крыла на разных стадиях полета.

По мере развития авиатехники количество этих устройств становилось все больше – закрылки, предкрылки, щитки, флапероны, элероны, элевоны, интерцепторы и другие средства механизации. Но самыми первыми изобрели закрылки. Они же являются самыми эффективными, а на некоторых самолетах – и единственными. И если маленький легкомоторный самолет вроде Цессна 172S теоретически на взлете можно обойтись и без них, то большой пассажирский авиалайнер без использования закрылков в прямом смысле слова не сможет оторваться от земли.

Не вся скорость одинаково полезна
Современное авиастроение – это вечные поиски баланса между прибылью и безопасностью. Прибыль – это возможность преодолевать как можно большие расстояния, то есть высокая скорость в полете. Безопасность – это, напротив, относительно невысокая скорость на взлете и особенно посадке. Как это совместить?

Чтобы быстро лететь, нужно крыло с узким профилем. Характерный пример – сверхзвуковые истребители. Вот только для взлета ему нужна огромная полоса для разбега, а для посадки и вовсе специальный тормозной парашют. Если сделать крыло широким и толстым, как у винтовых транспортников, садиться будет намного проще, но и скорость в полете намного ниже. Как быть?

Вариантов два – оборудовать все аэродромы длинными-длинными полосами, чтобы их хватало для длинных разбегов и пробегов, либо сделать так, чтобы профиль крыла мог меняться на разных стадиях полета. Как ни странно звучит, второй вариант намного проще.

Как взлетает самолет
Чтобы самолет взлетел, нужно, чтобы подъемная сила крыла превысила силу притяжения. Это азы, с которых начинается теоретическое обучение на пилота . Когда самолет стоит на земле, подъемная сила равна нулю. Увеличить ее можно двумя способами.

Первый – включить двигатели и начать разбег, потому что подъемная сила зависит от скорости. В принципе, для легкого самолета как Цессна-172 на длинной полосе этого вполне может хватить. Но когда самолет тяжелый, а полоса короткая, простого набора скорости не хватит.

Тут мог бы помочь второй вариант – увеличить угол атаки (задрать нос самолета вверх). Но и здесь не все так просто, потому что увеличивать угол атаки бесконечно нельзя. В какой-то момент он превысит так называемое критическое значение, после которого самолет рискует попасть в сваливание. Меняя форму крыла с помощью закрылков, пилот самолета может регулировать скорость (не самолета, а всего лишь обтекания крыла воздушным потоком) и угол атаки.

Обучение пилотированию: от теории к практике
Выпущенные закрылки меняют профиль крыла, а именно - увеличивают его кривизну. Очевидно, что вместе с этим увеличивается сопротивление. Зато уменьшается скорость сваливания. На практике это означает, что угол атаки не изменился, а подъемная сила выросла.

Почему это важно
Чем меньше угол атаки – тем ниже скорость сваливания. То есть теперь пилот самолета может увеличить угол атаки и взлететь, даже если не хватает скорости (мощности двигателя) и длины полосы для разбега.

Но у любой медали есть обратная сторона. Увеличение подъемной силы неизбежно ведет к увеличению сопротивления. То есть придется увеличить тягу, а значит вырастет расход топлива. Зато на посадке избыточное сопротивление напротив даже полезно, поскольку помогает быстрее затормозить самолет.

Все дело в градусах
Конкретные значения сильно зависят от модели, веса, загрузки самолета, длины ВПП, требований производителя и много-много чего еще, чуть ли не температуры за бортом. Но как правило для взлета закрылки выпускают на 5-15 градусов, для посадки – на 25-40 градусов.

Почему так – уже было сказано выше. Чем круче угол – тем больше сопротивление, тем эффективнее торможение. Отличный способ увидеть все это на практике – отправиться в пробный полет, в котором пилот самолета все покажет, расскажет и даже даст попробовать управлять самолетом самому.

Понимая это, легко понять и то, почему после перехода в горизонтальный полет закрылки, напротив, жизненно важно убрать. Дело в том, что изменившаяся форма крыла вызывает не просто сопротивление, но и меняет само качество набегающего потока. Конкретно речь идет о так называемом приграничном слое – том, который непосредственно соприкасается с крылом. Из плавного (ламинарного) он превращается в турбулентый.

И чем сильнее кривизна крыла – тем сильнее турбулентность, а там уже и до срыва потока недалеко. Более того, на высокой скорости «забытые» закрылки могут элементарно оторваться, а это уже критично, поскольку любая ассиметрия (вряд ли их оба оторвет одновременно) грозит потерей управления, вплоть до штопора.

Что еще бывает
Предкрылки. Как видно из названия, расположена в передней части крыла. По своему предназначению закрылками – позволяют регулировать несущие свойства крыла. в частности, летать на больших углах атаки, а значит на меньших скоростях.

Элероны. Расположены ближе к концовкам крыльев и позволяют регулировать крен. В отличие от закрылков, работающих строго синхронно, элероны двигаются дифференциально – если один вверх, то второй вниз.

Особой разновидностью элеронов являются флапероны – гибрид закрылков (англ. flap) и элеронов (aileron). Чаще всего ими оборудуют легкие самолеты.

Интерцепторы. Своего рода «аэродинамический тормоз» - расположенные на верхней плоскости крыла поверхности, которые при посадке (или прерванном взлете) поднимаются, увеличивая аэродинамическое сопротивление.

А еще бывают элерон-интерцепторы, многофункциональные интерцепторы (они же спойлеры), плюс каждая из перечисленных выше категорий имеет свои разновидности, так что перечислить все в рамках статьи невозможно физически. Как раз для этого и существует летная школа и курсы обучения на пилота .

Во вторник в Москву доставили основной «черный ящик» разбившегося в Сочи Ту-154. Издание «Лайф» расшифровку, подлинность которой официально не была подтверждена, однако из нее следовало, что у экипажа возникли проблемы с закрылками. А источник Интерфакса в свою очередь заявил, что Ту-154 мог потерпеть крушение из-за «сваливания» при недостаточной для взлета подъемной силе крыла.

«По предварительным данным, на борту рассогласованно сработали закрылки, в результате их невыхода подъемная сила была потеряна, скорость не была достаточной для набора высоты, и самолет свалился», — сказал источник в оперативном штабе по работе на месте происшествия.

«Новая газета» попросила экспертов прокомментировать версию с закрылками.

Андрей Литвинов

летчик 1-го класса, «Аэрофлот»

— Закрылки — это очень критично. Мы (летчики ред. ) в самом начале предполагали, что это закрылки — как только стало понятно, что это не топливо и не погода. Было несколько версий — техническая, ошибка пилотирования. Но это может быть и то, и другое. Техническая проблема потянула за собой ошибку пилотирования.

Закрылки нужны только для взлета и посадки — увеличивается площадь крыла, увеличивается подъемная сила, следовательно, самолету нужна меньшая дистанция разбега, чем без закрылок. Взлетаешь вместе с закрылками, набираешь высоту, закрылки убираются. Но они могут не убираться, если что-то сломалось, или убираются не синхронно — один быстрее, второй медленнее. Если они вообще не убираются, это не страшно как раз, самолет летит и летит себе. Он не уходит в пикирование. Просто командир сообщает на землю, что у него такая техническая проблема, возвращается на аэродром и садится — с выпущенными закрылками, как полагается при штатной посадке. И инженеры уже разбираются, что за проблема.

Но если они убираются несинхронно, то тогда самолет заваливается, вот что страшно. На одной плоскости крыла подъемная сила становится больше, чем на второй, и самолет начинает крениться и в результате заваливается набок. Если самолет заваливается, пикирует, начинает опускать нос, экипаж инстинктивно начинает тянуть штурвал на себя и увеличивать режим двигателя — это абсолютно нормально. Но летчик должен контролировать пространственное положение самолета.
Есть понятие — закритический угол атаки. Это угол, при котором воздух начинает срываться с крыла. Крыло становится под определенным углом, его верхняя часть не обтекается воздухом, и самолет начинает падать, потому что его ничего не держит уже в воздухе.

Я летал на ТУ-154 8 лет. С закрылками у меня не было ситуаций, были мелкие отказы, серьезного ничего не было. Хороший надежный самолет в свое время был. Но это было 25 лет назад. Это продукт своего времени. В «Аэрофлоте» все новые самолеты — мы летаем на эйрбасах, на боингах. А министерство обороны летает на ТУ- 154. Да, нужно делать свои самолеты, да, но пусть хотя бы суперджет возьмут. На современных самолетах стоит очень много систем защиты, это фактически летающий компьютер. Если случается какая-то ситуация, автоматика не дает самолету свалиться, очень помогает летчику. Эти же самолеты — все в ручном режиме, все в ручном управлении. Но это не значит, что он должен падать, он должен быть технически исправен. Он должен проходить техническое обслуживание. Вопрос к техникам — почему такая поломка серьезная случилась у этого самолета. Ошибиться может любой человек. Опыт у экипажа есть, был, но военные летчики в принципе мало летают. Военный летчик летает 150 часов в год. А гражданский — 90 часов в месяц.

Могла сработать еще внезапность, не ожидали такого развития событий, не хватило реакции справиться. Это не говорит о том, что они неопытные. Не забывайте, что время было 5 утра. Самый сон, организм расслаблен, изначально заторможенная реакция. Мы давно говорим, что надо запретить ночные перелеты или свести их к минимуму, надо стремиться летать днем, так делают очень многие европейские компании.

Еще нужно помнить, что тяжелый был самолет, заправили полные баки топлива, груз, пассажиры. Времени на принятие решения было немного. Они не успели. Эта ситуация, конечно, должна отрабатываться. Не знаю, как в армии обучение летного состава идет, но у нас в «Аэрофлоте» это отрабатывается. Есть алгоритм действий на каждую внештатную ситуацию. Все бесконечно отрабатывается на тренажере. Ходил ли этот экипаж на тренажер, когда? Если были на тренажере, отрабатывали ли конкретные упражнения по закрылкам? Ждем ответов от следствия.

Источник, близкий к расследованию

— Сейчас все техническое расследование ведет Минобороны. Это военный борт — расшифровкой самописцев занимается институт ВВС в Люберцах, и все самописцы, агрегаты, системы перетранспортированы в Люберцы. Закрылки — это не критическая, а в принципе контролируемая и управляемая ситуация. Есть алгоритм действий при рассинхронизации или неправильном положении закрылок. Летчиков обучают всему, на тренажерах в том числе, на каждый внештатный случай летный состав отрабатывает моменты, как надо себя вести, как надо управлять самолетом. У каждого самолета есть своя специфика, алгоритмы разработаны и для Ту-154. Можно предположить сочетание технических проблем и человеческого фактора, но информации до сих пор недостаточно.

Вадим Лукашевич

Независимый авиационный эксперт, кандидат технических наук

— Неуборка закрылок — это не катастрофа. Это очень неприятное событие, но ничего страшного от этого происходить не должно. А к катастрофе в Черном море, на мой взгляд, привело стечение обстоятельств и действия экипажа.

Суть смысла закрылок самолета — повышение подъемной силы крыла на маленьких скоростях. Как крыло работает — чем выше скорость, тем больше подъемная сила. Но когда самолет взлетает скорость еще маленькая, так же, как и в процессе посадки. И для того, чтобы при падении скорости не снижалась подъемная сила, выпускаются закрылки, о которых идет речь. Надо еще понимать, что при взлете закрылки выдвигаются не так сильно, как при посадке. При выруливании самолета на полосе закрылки уже выпущены, а в момент взлета последовательно убираются шасси, тормозящие машину, а через 15-20 секунд убираются и закрылки, мешающие по мере роста скорости самолету. Они помимо подъемной силы еще создают дополнительное сопротивление воздуха и дополнительно еще пикирующий момент — когда самолет «хочет» опустить нос.

Что произошло в момент катастрофы? Тяжелый, груженый самолет, залитый топливом взлетает, летчики убирают закрылки, но это почему-то не получается. По идее, можно нормально продолжать полет и в таком состоянии, не набирая скорости, можно и развернуться и уйти на посадку, чтобы устранить проблему. Сесть можно и с таким положением закрылок, просто скорость касания будет выше и она будет не очень простой. Но здесь очевидно такого решения не было. Возможно, проблему с закрылками заметили не сразу, а увидев, как самолет начинает опускать нос, возможно и были произнесены слова, расшифрованные с самописца.

Те люди, которые летали на самолетах и обращали внимание на крыло железной птицы, в то время как она садится или взлетает, наверняка замечали, что эта часть начинает меняться, появляются новые элементы, а само крыло становится шире. Этот процесс и называют механизацией крыла.

Общая информация

Люди всегда хотели быстрее ездить, быстрее летать и т. д. И, в общем-то, с самолетом это вполне получилось. В воздухе, когда аппарат уже летит, он развивает огромную скорость. Однако тут следует уточнить, что высокий показатель скорости приемлем лишь во время непосредственного полета. Во время взлета или посадки все совсем наоборот. Для того чтобы успешно поднять конструкцию в небо или же, наоборот, посадить ее, большая скорость не нужна. Причин этому несколько, но основная кроется в том, что для разгона понадобится огромная взлетная полоса.

Вторая основная причина - это предел прочности шасси самолета, который будет пройден, если взлетать таким образом. То есть в итоге получается так, что для скоростных полетов нужен один тип крыла, а для посадки и взлета - совсем другой. Что же делать в такой ситуации? Как создать у одного и того же самолета две принципиально разных по своей конструкции пары крыльев? Ответ - никак. Именно такое противоречие и подтолкнуло людей к новому изобретению, которое назвали механизацией крыла.

Угол атаки

Чтобы доступно объяснить, что такое механизация, необходимо изучить еще один небольшой аспект, который называется углом атаки. Эта характеристика имеет самую непосредственную связь со скоростью, которую самолет способен развить. Здесь важно понимать, что в полете практически любое крыло находится под углом по отношению к набегающему на него потоку. Вот этот показатель и зовется углом атаки.

Допустим, чтобы лететь с малой скоростью и при этом сохранить подъемную силу, чтобы не упасть, придется увеличить этот угол, то есть самолета вверх, как это делается на взлете. Однако тут важно уточнить, что есть критическая отметка, после пересечения которой поток не сможет удерживаться на поверхности конструкции и сорвется с нее. Такое в пилотировании называют отрывом пограничного слоя.

Этим слоем называют поток воздуха, который непосредственно соприкасается с крылом самолета и создает при этом аэродинамические силы. С учетом всего этого формируется требование - наличие большой подъемной мощности на малой скорости и поддержание требуемого угла атаки, чтобы лететь на высокой скорости. Именно эти два качества и совмещает в себе механизация крыла самолета.

Улучшение характеристик

Для того чтобы улучшить взлетно-посадочные характеристики, а также обеспечить безопасность экипажа и пассажиров, необходимо по максимуму уменьшить скорость взлета и посадки. Именно наличие этих двух факторов привело к тому, что проектировщики профиля крыла стали прибегать к созданию большого числа различных устройств, которые располагаются непосредственно на крыле самолета. Набор этих специальных управляемых устройств и стали называть механизацией крыла в авиастроении.

Предназначение механизации

Применяя такие крылья, удалось достичь сильного увеличения значения подъемной силы аппарата. Значительное увеличение этого показателя привело к тому, что сильно уменьшился пробег самолета при посадке по полосе, а также уменьшилась скорость, с которой он приземляется или взлетает. Назначение механизации крыла также в том, что она улучшила устойчивость и повысила управляемость такой большой авиамашины, как самолет. Это особенно стало заметно, когда летательный аппарат набирает высокий угол атаки. К тому же стоит сказать, что существенное снижение скорости посадки и взлета не только увеличило безопасность выполнения этих операций, но и позволило сократить затраты на строительство взлетных полос, так как появилась возможность их сокращения по длине.

Суть механизации

Итак, если говорить в общем, то механизация крыла привела к тому, что были значительно улучшены взлетно-посадочные параметры самолета. Такой результат был достигнут за счет сильного увеличения максимального коэффициента подъемной силы.

Суть этого процесса заключена в том, что добавляются специальные устройства, которые усиливают кривизну профиля крыла аппарата. В некоторых случаях получается и так, что увеличивается не только кривизна, но и непосредственная площадь этого элемента самолета. Из-за изменения этих показателей полностью меняется и картина обтекаемости. Эти факторы и являются определяющими в увеличении коэффициента подъемной силы.

Важно отметить, что конструкция механизации крыла выполняется таким образом, чтобы в полете все эти детали были управляемыми. Нюанс кроется в том, что на малом углу атаки, то есть при полете уже в воздухе на большой скорости, они фактически не используются. Весь их потенциал раскрывается именно при посадке или взлете. В настоящее время различают несколько видов механизации.

Щиток

Щиток - это одна из самых распространенных и самых простых деталей механизированного крыла, которая довольно эффективно справляется с задачей повышения коэффициента подъемной силы. В схеме механизации крыла этот элемент представляет собой отклоняющуюся поверхность. При убранном положении этот элемент почти вплотную примыкает к нижней и задней части крыла самолета. При отклонении этой детали максимальная подъемная сила аппарата увеличивается, потому что меняется эффективный угол атаки, а также вогнутость или кривизна профиля.

Для того чтобы увеличить эффективность этого элемента, его конструктивно исполняют так, чтобы он при своем отклонении смещался назад и одновременно с этим к задней кромке. Именно такой способ даст наибольшую эффективность отсоса пограничного слоя с верхней поверхности крыла. Кроме этого, увеличивается эффективная протяженность зоны повышенного давления под крылом самолета.

Конструкция и назначение механизации крыла самолета с предкрылками

Здесь важно отметить сразу, что фиксированный предкрылок монтируется только на те модели самолета, которые не являются скоростными. Это объясняется тем, что такой тип конструкции значительно увеличивает лобовое сопротивление, а это резко снижает возможность летательного аппарата развить высокую скорость.

Закрылки

Схема механизации крыла с закрылками - одна из самых старых, так как эти элементы были одними из первых, которые стали использоваться. Расположение этого элемента всегда одно и то же, находятся они на задней части крыла. Движение, которое они выполняют, также всегда одинаковое, они всегда опускаются строго вниз. Также они могут немного выдвигаться назад. Наличие этого простого элемента на практике оказалось очень эффективным. Он помогает самолету не только при взлете или посадке, но и при выполнении любых других маневров при пилотировании.

Тип этого элемента может несколько изменяться в зависимости от на котором он используется. Механизация крыла ТУ-154, который считается одним из самых распространенных типов самолета, также имеет это простое устройство. Некоторые самолеты характеризуются тем, что их закрылки поделены на несколько самостоятельных частей, а у некоторых это один сплошной закрылок.

Элероны и интерцепторы

Кроме тех элементов, что уже были описаны, есть еще те, которые можно отнести к второстепенным. Система механизации крыла включает в себя такие второстепенные детали, как элероны. Работа этих деталей осуществляется дифференциально. Чаще всего используется конструкция такая, что на одном крыле элероны направлены вверх, а на втором они направлены вниз. Кроме них есть еще и такие элементы, как флапероны. По своим характеристикам они схожи с закрылками, отклоняться эти детали могут не только в разные стороны, но и в одну и ту же.

Дополнительными элементами являются также интерцепторы. Эта деталь является плоской и располагается на поверхности крыла. Отклонение, или скорее подъем, интерцептора осуществляется прямо в поток. Из-за этого происходит увеличение торможения потока, в силу этого увеличивается давление на верхней поверхности. Это приводит к тому, что уменьшается подъемная сила именно данного крыла. Эти элементы крыла иногда еще называют органами для управления подъемной силой самолета.

Стоит сказать о том, что это довольно краткая характеристика всех элементов конструкции механизации крыла самолета. В действительности там используется намного больше разнообразных мелких деталей, элементов, которые позволяют пилотам полностью контролировать процесс посадки, взлета, самого полета и т. д.

Самолет может подняться в воздух, в том случае, если подъемная сила, возникающая при обтекании крыла воздухом превысит силу тяжести.

Для того, чтобы поднять самолет в воздух и получить требуемую подъемную силу, необходимо обеспечить обтекание крыла потоком воздуха, значит самолету для полета необходима скорость.

Самолет разбегается по взлетной полосе и, когда величина подъемной силы будет выше силы тяжести отрывается от земли. Попробуем разобраться, как возникает подъемная сила ?

Аэродинамическая сила

При обтекании потокам воздуха пластины, расположенной параллельно линиям тока из-за разности давлений и сил трения, возникает аэродинамическая сила. В данном случае обтекание пластины потоком воздуха симметричное.


Несимметричным оно станет в том случае, если пластину наклонить, возникающая аэродинамическая сила будет направлена под углом к потоку. Угол наклона пластины называют углом атаки.


Разложим аэродинамическую силу на две составляющие:

  • вертикальную - подъемную силу;
  • горизонтальную силу лобового сопротивления.

При увеличении аэродинамической силы будут возрастать как вертикальная, так и горизонтальная составляющая.

Подъемная сила позволяет поднять самолет, а сила лобового сопротивления действует против направления его движения, то есть тормозит его.

Возникновение подъемной силы на крыле самолета

Наиболее благоприятным будет вариант, при котором, при малой силе сопротивления подъемная сила будет большой. Это позволит снизить потребную мощность двигателей, и расход топлива. Для этого создаются крылья несимметричного профиля.

Подъемная сила возникает при несимметричном обтекании профиля крыла потоком воздуха.


Струйки потока обтекают крыло сверху и снизу по разному.

При обтекании верхней выпуклой поверхности крыла из-за инертности струйки воздуха сжимаются, и в соответствии с , скорость движения частиц воздуха.

Скорость частиц воздуха обтекающих крыло снизу - уменьшается. на верхней поверхности профиля будет меньше чем на нижней, в соответствии с .

В результате разницы давлений под крылом и над крылом возникает подъемная сила. Когда подъемная сила будет больше силы тяжести самолет взлетает.


Механизация крыла

Увеличение подъемной силы связано и с увеличением силы лобового сопротивления. Чем выше скорость самолета, тем сильнее сила лобового сопротивления будет тормозить его. Поэтому для полета на больших скоростях необходимо крыло, не вызывающего значительного лобового сопротивления, подъемная сила у такого него, также будет невелика, но когда самолет набрал высоту большая подъемная сила и не нужна.

Для полета на малых скоростях необходимо такое крыло, которое обеспечит максимальную подъемную силу, сила лобового сопротивления такого крыла выше, но на малых скоростях это не так критично.

Получается, что для того, чтобы взлетать на малой скорости, а проводить полет на большой скорости самолету нужны крылья с разным профилем, или, как минимум крыло с разными характеристиками. Получить необходимые характеристики на разных этапах полета помогают элементы механизации крыла:

  • закрылки,
  • предкрылки,
  • щитки.

Закрылок

Отклоняемый элемент механизации, расположенный на задней кромке крыла называют закрылком .


Выпуск закрылков позволяет значительно увеличить подъемную силу,при этом возрастает и сила лобового сопротивления.

Закрылки позволяют самолету взлететь на меньшей скорости, и совершать полет на малых скоростях.

Для набора скорости в полете сопротивление необходимо уменьшить, поэтому сначала угол наклона закрылков уменьшается, а затем они и вовсе убираются. В убранном закрылок составляет часть профиля крыла.

В режиме посадки, возрастающее сопротивление при выпуске закрылков позволяет снизить скорость самолета, а возросшая подъемная сила обеспечивает устойчивый полет при снижении скорости.

Предкрылок

Элемент механизации крыла, расположенный на его передней кромке, предназначенный для управления пограничным слоем называют предкрылком . Различают фиксированные предкрылки, жестко связанные с крылом и автоматические предкрылки, которые могут быть прижаты к крылу или выдвинуты в зависимости от угла атаки.


Щиток

Щиток - элемент механизации крыла, представляющий собой отклоняемую поверхность, расположенную в задней части крыла.

Наклон щитка позволяет увеличить подъемную силу. Возрастающее сопротивление позволяет снизить пробег при посадке самолета.

Элементы управления

Вертикальное оперение позволяет обеспечить балансировку, устойчивость и управляемость самолета.

Оперение самолета составляют из неподвижные и подвижные элементы:

  • Стабилизатор - неподвижная часть горизонтального оперения;
  • Киль - неподвижная часть вертикального оперения;
  • Руль высоты - подвижный элемент, который крепится к стабилизатору;
  • Руль направления - подвижный элемент, закрепляемый на киле.

Действие рулей основано на изменении аэродинамической силы, при изменении угла наклона по отношению к направлению движения потока воздуха. При изменении угла наклона возникает аэродинамической силы, которая, благодаря плечу относительно центра тяжести самолета, создает вращающий момент.

Руль высоты

При отклонении руля высоты, нос самолета направляется вверх, увеличивается угол тангажа - самолет набирает высоту, кабрирует .


При перемещении руля высоты в противоположном направлении, нос самолета опускается вниз, угол тангажа становится отрицательным, самолет пикирует .


Руль направления

При изменении положения руля направления, за счет возникающей аэродинамической силы, появляется момент, поворачивающий самолет относительно нормальной оси. С помощью руля направления можно изменяется угол рысканья самолета.


Руль направления чаще всего используется для корректировки курса самолета при разбеге или пробеге при посадке.

Элероны

Вид криволинейного полета, служащий для изменения направления называют виражом . Для осуществления виража самолет необходимо изменить угол крена, сделать это позволяют элероны.


Элемент управления самолета, расположенный на задней кромке крыла называют элероном .

Принцип действия элеронов основан на изменении аэродинамической силы, если левый элерон отклоняется вниз, а правый вверх, то подъемная сила правой части крыла уменьшается, а левой - возрастает, в результате чего возникает момент, вызывающий крен самолета.


При крене самолета, из-за изменения режима обтекания крыла, создается центростремительная сила и самолет начинает двигаться по кривой, но демпфирующий момент вертикального оперения противодействует развороту. Для выполнения виража необходимо не только накренить самолет, но и отклонить руль направления в сторону виража, увечить тягу двигателя.